Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (188)
  • Open Access

    ARTICLE

    The Impact of SWMF Features on the Performance of Random Forest, LSTM and Neural Network Classifiers for Detecting Trojans

    Fatemeh Ahmadi Abkenari*, Melika Zandi, Shanmugapriya Gopalakrishnan

    Journal of Cyber Security, Vol.8, pp. 93-109, 2026, DOI:10.32604/jcs.2026.074197 - 20 January 2026

    Abstract Nowadays, cyberattacks are considered a significant threat not only to the reputation of organizations through the theft of customers’ data or reducing operational throughput, but also to their data ownership and the safety and security of their operations. In recent decades, machine learning techniques have been widely employed in cybersecurity research to detect various types of cyberattacks. In the domain of cybersecurity data, and especially in Trojan detection datasets, it is common for datasets to record multiple statistical measures for a single concept. We referred to them as SWMF features in this paper, which include… More >

  • Open Access

    ARTICLE

    Traffic Vision: UAV-Based Vehicle Detection and Traffic Pattern Analysis via Deep Learning Classifier

    Mohammed Alnusayri1, Ghulam Mujtaba2, Nouf Abdullah Almujally3, Shuoa S. Aitarbi4, Asaad Algarni5, Ahmad Jalal2,6, Jeongmin Park7,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071804 - 12 January 2026

    Abstract This paper presents a unified Unmanned Aerial Vehicle-based (UAV-based) traffic monitoring framework that integrates vehicle detection, tracking, counting, motion prediction, and classification in a modular and co-optimized pipeline. Unlike prior works that address these tasks in isolation, our approach combines You Only Look Once (YOLO) v10 detection, ByteTrack tracking, optical-flow density estimation, Long Short-Term Memory-based (LSTM-based) trajectory forecasting, and hybrid Speeded-Up Robust Feature (SURF) + Gray-Level Co-occurrence Matrix (GLCM) feature engineering with VGG16 classification. Upon the validation across datasets (UAVDT and UAVID) our framework achieved a detection accuracy of 94.2%, and 92.3% detection accuracy when More >

  • Open Access

    ARTICLE

    Transfer Learning-Based Approach with an Ensemble Classifier for Detecting Keylogging Attack on the Internet of Things

    Yahya Alhaj Maz1, Mohammed Anbar1, Selvakumar Manickam1,*, Mosleh M. Abualhaj2, Sultan Ahmed Almalki3, Basim Ahmad Alabsi4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5287-5307, 2025, DOI:10.32604/cmc.2025.068257 - 23 October 2025

    Abstract The Internet of Things (IoT) is an innovation that combines imagined space with the actual world on a single platform. Because of the recent rapid rise of IoT devices, there has been a lack of standards, leading to a massive increase in unprotected devices connecting to networks. Consequently, cyberattacks on IoT are becoming more common, particularly keylogging attacks, which are often caused by security vulnerabilities on IoT networks. This research focuses on the role of transfer learning and ensemble classifiers in enhancing the detection of keylogging attacks within small, imbalanced IoT datasets. The authors propose… More >

  • Open Access

    ARTICLE

    Active Learning-Enhanced Deep Ensemble Framework for Human Activity Recognition Using Spatio-Textural Features

    Lakshmi Alekhya Jandhyam1,*, Ragupathy Rengaswamy1, Narayana Satyala2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3679-3714, 2025, DOI:10.32604/cmes.2025.068941 - 30 September 2025

    Abstract Human Activity Recognition (HAR) has become increasingly critical in civic surveillance, medical care monitoring, and institutional protection. Current deep learning-based approaches often suffer from excessive computational complexity, limited generalizability under varying conditions, and compromised real-time performance. To counter these, this paper introduces an Active Learning-aided Heuristic Deep Spatio-Textural Ensemble Learning (ALH-DSEL) framework. The model initially identifies keyframes from the surveillance videos with a Multi-Constraint Active Learning (MCAL) approach, with features extracted from DenseNet121. The frames are then segmented employing an optimized Fuzzy C-Means clustering algorithm with Firefly to identify areas of interest. A deep ensemble More >

  • Open Access

    ARTICLE

    ONTDAS: An Optimized Noise-Based Traffic Data Augmentation System for Generalizability Improvement of Traffic Classifiers

    Rongwei Yu1, Jie Yin1,*, Jingyi Xiang1, Qiyun Shao2, Lina Wang1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 365-391, 2025, DOI:10.32604/cmc.2025.064438 - 09 June 2025

    Abstract With the emergence of new attack techniques, traffic classifiers usually fail to maintain the expected performance in real-world network environments. In order to have sufficient generalizability to deal with unknown malicious samples, they require a large number of new samples for retraining. Considering the cost of data collection and labeling, data augmentation is an ideal solution. We propose an optimized noise-based traffic data augmentation system, ONTDAS. The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise. The noise is injected into the original samples for data augmentation. Then, an More >

  • Open Access

    ARTICLE

    Dual-Classifier Label Correction Network for Carotid Plaque Classification on Multi-Center Ultrasound Images

    Louyi Jiang1,#, Sulei Wang1,#, Jiang Xie1, Haiya Wang2, Wei Shao3,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5445-5460, 2025, DOI:10.32604/cmc.2025.061759 - 19 May 2025

    Abstract Carotid artery plaques represent a major contributor to the morbidity and mortality associated with cerebrovascular disease, and their clinical significance is largely determined by the risk linked to plaque vulnerability. Therefore, classifying plaque risk constitutes one of the most critical tasks in the clinical management of this condition. While classification models derived from individual medical centers have been extensively investigated, these single-center models often fail to generalize well to multi-center data due to variations in ultrasound images caused by differences in physician expertise and equipment. To address this limitation, a Dual-Classifier Label Correction Network model… More >

  • Open Access

    ARTICLE

    Drone-Based Public Surveillance Using 3D Point Clouds and Neuro-Fuzzy Classifier

    Yawar Abbas1, Aisha Ahmed Alarfaj2, Ebtisam Abdullah Alabdulqader3, Asaad Algarni4, Ahmad Jalal1,5, Hui Liu6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4759-4776, 2025, DOI:10.32604/cmc.2025.059224 - 06 March 2025

    Abstract Human Activity Recognition (HAR) in drone-captured videos has become popular because of the interest in various fields such as video surveillance, sports analysis, and human-robot interaction. However, recognizing actions from such videos poses the following challenges: variations of human motion, the complexity of backdrops, motion blurs, occlusions, and restricted camera angles. This research presents a human activity recognition system to address these challenges by working with drones’ red-green-blue (RGB) videos. The first step in the proposed system involves partitioning videos into frames and then using bilateral filtering to improve the quality of object foregrounds while… More >

  • Open Access

    ARTICLE

    Deep Learning and Machine Learning Architectures for Dementia Detection from Speech in Women

    Ahlem Walha1, Amel Ksibi2,*, Mohammed Zakariah3,*, Manel Ayadi2, Tagrid Alshalali2, Oumaima Saidani2, Leila Jamel2, Nouf Abdullah Almujally2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2959-3001, 2025, DOI:10.32604/cmes.2025.060545 - 03 March 2025

    Abstract Dementia is a neurological disorder that affects the brain and its functioning, and women experience its effects more than men do. Preventive care often requires non-invasive and rapid tests, yet conventional diagnostic techniques are time-consuming and invasive. One of the most effective ways to diagnose dementia is by analyzing a patient’s speech, which is cheap and does not require surgery. This research aims to determine the effectiveness of deep learning (DL) and machine learning (ML) structures in diagnosing dementia based on women’s speech patterns. The study analyzes data drawn from the Pitt Corpus, which contains… More >

  • Open Access

    ARTICLE

    Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection

    Xing Wang1,*, Huazhen Liu1, Abdelazim G. Hussien2, Gang Hu1, Li Zhang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2791-2839, 2025, DOI:10.32604/cmes.2025.058473 - 03 March 2025

    Abstract Feature selection (FS) is essential in machine learning (ML) and data mapping by its ability to preprocess high-dimensional data. By selecting a subset of relevant features, feature selection cuts down on the dimension of the data. It excludes irrelevant or surplus features, thus boosting the performance and efficiency of the model. Particle Swarm Optimization (PSO) boasts a streamlined algorithmic framework and exhibits rapid convergence traits. Compared with other algorithms, it incurs reduced computational expenses when tackling high-dimensional datasets. However, PSO faces challenges like inadequate convergence precision. Therefore, regarding FS problems, this paper presents a binary… More >

  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

Displaying 1-10 on page 1 of 188. Per Page