Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (406)
  • Open Access

    ARTICLE

    Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm

    Binjiang Hu1,*, Yihua Zhu2, Liang Tu1,2, Zun Ma3, Xian Meng3, Kewei Xu3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069777 - 27 December 2025

    Abstract This paper proposes an equivalent modeling method for photovoltaic (PV) power stations via a particle swarm optimization (PSO) K-means clustering (KMC) algorithm with passive filter parameter clustering to address the complexities, simulation time cost and convergence problems of detailed PV power station models. First, the amplitude–frequency curves of different filter parameters are analyzed. Based on the results, a grouping parameter set for characterizing the external filter characteristics is established. These parameters are further defined as clustering parameters. A single PV inverter model is then established as a prerequisite foundation. The proposed equivalent method combines the… More >

  • Open Access

    ARTICLE

    HCF-MFGB: Hybrid Collaborative Filtering Based on Matrix Factorization and Gradient Boosting

    Salahudin Robo1,2, Triyanna Widiyaningtyas1,*, Wahyu Sakti Gunawan Irianto1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.073011 - 09 December 2025

    Abstract Recommendation systems are an integral and indispensable part of every digital platform, as they can suggest content or items to users based on their respective needs. Collaborative filtering is a technique often used in various studies, which produces recommendations by analyzing similarities between users and items based on their behavior. Although often used, traditional collaborative filtering techniques still face the main challenge of sparsity. Sparsity problems occur when the data in the system is sparse, meaning that only a portion of users provide feedback on some items, resulting in inaccurate recommendations generated by the system.… More >

  • Open Access

    ARTICLE

    A Mix Location Privacy Preservation Method Based on Differential Privacy with Clustering

    Fang Liu*, Xianghui Meng, Jiachen Li, Sibo Guo

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069243 - 09 December 2025

    Abstract With the popularization of smart devices, Location-Based Services (LBS) greatly facilitates users’ life, but at the same time brings the risk of users’ location privacy leakage. Existing location privacy protection methods are deficient, failing to reasonably allocate the privacy budget for non-outlier location points and ignoring the critical location information that may be contained in the outlier points, leading to decreased data availability and privacy exposure problems. To address these problems, this paper proposes a Mix Location Privacy Preservation Method Based on Differential Privacy with Clustering (MLDP). The method first utilizes the DBSCAN clustering algorithm… More >

  • Open Access

    ARTICLE

    When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation

    Noreen Fuentes1, Janeth Ugang1, Narcisan Galamiton1, Suzette Bacus1, Samantha Shane Evangelista2, Fatima Maturan2, Lanndon Ocampo2,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068104 - 10 November 2025

    Abstract This study demonstrates a novel integration of large language models, machine learning, and multi-criteria decision-making to investigate self-moderation in small online communities, a topic under-explored compared to user behavior and platform-driven moderation on social media. The proposed methodological framework (1) utilizes large language models for social media post analysis and categorization, (2) employs k-means clustering for content characterization, and (3) incorporates the TODIM (Tomada de Decisão Interativa Multicritério) method to determine moderation strategies based on expert judgments. In general, the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation… More >

  • Open Access

    ARTICLE

    DriftXMiner: A Resilient Process Intelligence Approach for Safe and Transparent Detection of Incremental Concept Drift in Process Mining

    Puneetha B. H.1,*, Manoj Kumar M. V.2,*, Prashanth B. S.2, Piyush Kumar Pareek3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.067706 - 10 November 2025

    Abstract Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational, organizational, or regulatory factors. These changes, referred to as incremental concept drift, gradually alter the behavior or structure of processes, making their detection and localization a challenging task. Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift, particularly from a control-flow perspective. The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs, with a… More >

  • Open Access

    ARTICLE

    LLM-Based Enhanced Clustering for Low-Resource Language: An Empirical Study

    Talha Farooq Khan1, Majid Hussain1, Muhammad Arslan2, Muhammad Saeed1, Lal Khan3,*, Hsien-Tsung Chang4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3883-3911, 2025, DOI:10.32604/cmes.2025.073021 - 23 December 2025

    Abstract Text clustering is an important task because of its vital role in NLP-related tasks. However, existing research on clustering is mainly based on the English language, with limited work on low-resource languages, such as Urdu. Low-resource language text clustering has many drawbacks in the form of limited annotated collections and strong linguistic diversity. The primary aim of this paper is twofold: (1) By introducing a clustering dataset named UNC-2025 comprises 100k Urdu news documents, and (2) a detailed empirical standard of Large Language Model (LLM) improved clustering methods for Urdu text. We explicitly evaluate the… More >

  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

  • Open Access

    ARTICLE

    An Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5625-5642, 2025, DOI:10.32604/cmc.2025.069636 - 23 October 2025

    Abstract Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance. This method effectively integrates prior knowledge using pre-labeled data. While semi-supervised fuzzy clustering (SSFC) methods leverage limited labeled data to enhance accuracy, they remain highly susceptible to inappropriate or mislabeled prior knowledge, especially in noisy or overlapping datasets where cluster boundaries are ambiguous. To enhance the effectiveness of clustering algorithms, it is essential to leverage labeled data while ensuring the safety of the previous knowledge. Existing solutions, such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method (TS3FCM),… More >

  • Open Access

    ARTICLE

    An Innovative Semi-Supervised Fuzzy Clustering Technique Using Cluster Boundaries

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5341-5357, 2025, DOI:10.32604/cmc.2025.068299 - 23 October 2025

    Abstract Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data, guided by active learning, to enhance classification accuracy, particularly in complex and ambiguous datasets. Although several active semi-supervised fuzzy clustering methods have been developed previously, they typically face significant limitations, including high computational complexity, sensitivity to initial cluster centroids, and difficulties in accurately managing boundary clusters where data points often overlap among multiple clusters. This study introduces a novel Active Semi-Supervised Fuzzy Clustering algorithm specifically designed to identify, analyze, and correct misclassified boundary elements. By strategically utilizing labeled data through active learning, our More >

  • Open Access

    ARTICLE

    Neighbor Dual-Consistency Constrained Attribute-Graph Clustering#

    Tian Tian1,2, Boyue Wang1,2, Xiaxia He1,2,*, Wentong Wang3, Meng Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4885-4898, 2025, DOI:10.32604/cmc.2025.067795 - 23 October 2025

    Abstract Attribute-graph clustering aims to divide the graph nodes into distinct clusters in an unsupervised manner, which usually encodes the node attribute feature and the corresponding graph structure into a latent feature space. However, traditional attribute-graph clustering methods often neglect the effect of neighbor information on clustering, leading to suboptimal clustering results as they fail to fully leverage the rich contextual information provided by neighboring nodes, which is crucial for capturing the intrinsic relationships between nodes and improving clustering performance. In this paper, we propose a novel Neighbor Dual-Consistency Constrained Attribute-Graph Clustering that leverages information from… More >

Displaying 1-10 on page 1 of 406. Per Page