Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (312)
  • Open Access

    ARTICLE

    Adaptive Density-Based Spatial Clustering of Applications with Noise (ADBSCAN) for Clusters of Different Densities

    Ahmed Fahim1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3695-3712, 2023, DOI:10.32604/cmc.2023.036820

    Abstract Finding clusters based on density represents a significant class of clustering algorithms. These methods can discover clusters of various shapes and sizes. The most studied algorithm in this class is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). It identifies clusters by grouping the densely connected objects into one group and discarding the noise objects. It requires two input parameters: epsilon (fixed neighborhood radius) and MinPts (the lowest number of objects in epsilon). However, it can’t handle clusters of various densities since it uses a global value for epsilon. This article proposes an adaptation of the DBSCAN method so… More >

  • Open Access

    ARTICLE

    Adaptive Noise Detector and Partition Filter for Image Restoration

    Cong Lin1, Chenghao Qiu1, Can Wu1, Siling Feng1,*, Mengxing Huang1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4317-4340, 2023, DOI:10.32604/cmc.2023.036249

    Abstract The random-value impulse noise (RVIN) detection approach in image denoising, which is dependent on manually defined detection thresholds or local window information, does not have strong generalization performance and cannot successfully cope with damaged pictures with high noise levels. The fusion of the K-means clustering approach in the noise detection stage is reviewed in this research, and the internal relationship between the flat region and the detail area of the damaged picture is thoroughly explored to suggest an unique two-stage method for gray image denoising. Based on the concept of pixel clustering and grouping, all pixels in the damaged picture… More >

  • Open Access

    ARTICLE

    Semantic Document Layout Analysis of Handwritten Manuscripts

    Emad Sami Jaha*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2805-2831, 2023, DOI:10.32604/cmc.2023.036169

    Abstract A document layout can be more informative than merely a document’s visual and structural appearance. Thus, document layout analysis (DLA) is considered a necessary prerequisite for advanced processing and detailed document image analysis to be further used in several applications and different objectives. This research extends the traditional approaches of DLA and introduces the concept of semantic document layout analysis (SDLA) by proposing a novel framework for semantic layout analysis and characterization of handwritten manuscripts. The proposed SDLA approach enables the derivation of implicit information and semantic characteristics, which can be effectively utilized in dozens of practical applications for various… More >

  • Open Access

    REVIEW

    Subspace Clustering in High-Dimensional Data Streams: A Systematic Literature Review

    Nur Laila Ab Ghani1,2,*, Izzatdin Abdul Aziz1,2, Said Jadid AbdulKadir1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4649-4668, 2023, DOI:10.32604/cmc.2023.035987

    Abstract Clustering high dimensional data is challenging as data dimensionality increases the distance between data points, resulting in sparse regions that degrade clustering performance. Subspace clustering is a common approach for processing high-dimensional data by finding relevant features for each cluster in the data space. Subspace clustering methods extend traditional clustering to account for the constraints imposed by data streams. Data streams are not only high-dimensional, but also unbounded and evolving. This necessitates the development of subspace clustering algorithms that can handle high dimensionality and adapt to the unique characteristics of data streams. Although many articles have contributed to the literature… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems

    Firas Abedi1, Hayder M. A. Ghanimi2, Mohammed A. M. Sadeeq3, Ahmed Alkhayyat4,*, Zahraa H. Kareem5, Sarmad Nozad Mahmood6, Ali Hashim Abbas7, Ali S. Abosinnee8, Waleed Khaild Al-Azzawi9, Mustafa Musa Jaber10,11, Mohammed Dauwed12

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3359-3374, 2023, DOI:10.32604/cmc.2023.034221

    Abstract Recent economic growth and development have considerably raised energy consumption over the globe. Electric load prediction approaches become essential for effective planning, decision-making, and contract evaluation of the power systems. In order to achieve effective forecasting outcomes with minimum computation time, this study develops an improved whale optimization with deep learning enabled load prediction (IWO-DLELP) scheme for energy storage systems (ESS) in smart grid platform. The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS. The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and… More >

  • Open Access

    ARTICLE

    Clustering Reference Images Based on Covisibility for Visual Localization

    Sangyun Lee1, Junekoo Kang2, Hyunki Hong2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2705-2725, 2023, DOI:10.32604/cmc.2023.034136

    Abstract In feature-based visual localization for small-scale scenes, local descriptors are used to estimate the camera pose of a query image. For large and ambiguous environments, learning-based hierarchical networks that employ local as well as global descriptors to reduce the search space of database images into a smaller set of reference views have been introduced. However, since global descriptors are generated using visual features, reference images with some of these features may be erroneously selected. In order to address this limitation, this paper proposes two clustering methods based on how often features appear as well as their covisibility. For both approaches,… More >

  • Open Access

    ARTICLE

    Energy-Efficient Clustering Using Optimization with Locust Game Theory

    P. Kavitha Rani1, Hee-Kwon Chae2, Yunyoung Nam2,*, Mohamed Abouhawwash3,4

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2591-2605, 2023, DOI:10.32604/iasc.2023.033697

    Abstract Wireless sensor networks (WSNs) are made up of several sensors located in a specific area and powered by a finite amount of energy to gather environmental data. WSNs use sensor nodes (SNs) to collect and transmit data. However, the power supplied by the sensor network is restricted. Thus, SNs must store energy as often as to extend the lifespan of the network. In the proposed study, effective clustering and longer network lifetimes are achieved using multi-swarm optimization (MSO) and game theory based on locust search (LS-II). In this research, MSO is used to improve the optimum routing, while the LS-II… More >

  • Open Access

    REVIEW

    Application of U-Net and Optimized Clustering in Medical Image Segmentation: A Review

    Jiaqi Shao1,#, Shuwen Chen1,2,3,#,*, Jin Zhou1,#, Huisheng Zhu1, Ziyi Wang1, Mackenzie Brown4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2173-2219, 2023, DOI:10.32604/cmes.2023.025499

    Abstract As a mainstream research direction in the field of image segmentation, medical image segmentation plays a key role in the quantification of lesions, three-dimensional reconstruction, region of interest extraction and so on. Compared with natural images, medical images have a variety of modes. Besides, the emphasis of information which is conveyed by images of different modes is quite different. Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors. Therefore, large quantities of automated medical image segmentation methods have been developed. However, until now, researchers have not developed a universal method for all… More >

  • Open Access

    ARTICLE

    Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm

    Jipeng Gu1, Weijie Zhang1, Youbing Zhang1,*, Binjie Wang1, Wei Lou2, Mingkang Ye3, Linhai Wang3, Tao Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2221-2236, 2023, DOI:10.32604/cmes.2023.025396

    Abstract An improved fuzzy time series algorithm based on clustering is designed in this paper. The algorithm is successfully applied to short-term load forecasting in the distribution stations. Firstly, the K-means clustering method is used to cluster the data, and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division. On this basis, the data is fuzzed to form a fuzzy time series. Secondly, a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load, which is used to predict the short-term trend change of load in the… More >

  • Open Access

    ARTICLE

    A Novel Ultra Short-Term Load Forecasting Method for Regional Electric Vehicle Charging Load Using Charging Pile Usage Degree

    Jinrui Tang*, Ganheng Ge, Jianchao Liu, Honghui Yang

    Energy Engineering, Vol.120, No.5, pp. 1107-1132, 2023, DOI:10.32604/ee.2023.025666

    Abstract Electric vehicle (EV) charging load is greatly affected by many traffic factors, such as road congestion. Accurate ultra short-term load forecasting (STLF) results for regional EV charging load are important to the scheduling plan of regional charging load, which can be derived to realize the optimal vehicle to grid benefit. In this paper, a regional-level EV ultra STLF method is proposed and discussed. The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles, and then constructed by our collected EV charging transaction data in the field. Secondly, these usage degrees… More >

Displaying 21-30 on page 3 of 312. Per Page