Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (83)
  • Open Access

    ARTICLE

    Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI

    Hamid A. Jalab1, Ala’a R. Al-Shamasneh1, Hadil Shaiba2, Rabha W. Ibrahim3,4,*, Dumitru Baleanu5,6,7

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2061-2075, 2021, DOI:10.32604/cmc.2021.015170

    Abstract Recently, many rapid developments in digital medical imaging have made further contributions to health care systems. The segmentation of regions of interest in medical images plays a vital role in assisting doctors with their medical diagnoses. Many factors like image contrast and quality affect the result of image segmentation. Due to that, image contrast remains a challenging problem for image segmentation. This study presents a new image enhancement model based on fractional Rényi entropy for the segmentation of kidney MRI scans. The proposed work consists of two stages: enhancement by fractional Rényi entropy, and MRI Kidney deep segmentation. The proposed… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks

    Ruaa A. Al-Falluji1,*, Zainab Dalaf Katheeth2, Bashar Alathari2

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1301-1313, 2021, DOI:10.32604/cmc.2020.013232

    Abstract The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.… More >

  • Open Access

    ARTICLE

    An Emotion Analysis Method Using Multi-Channel Convolution Neural Network in Social Networks

    Xinxin Lu1,*, Hong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 281-297, 2020, DOI:10.32604/cmes.2020.010948

    Abstract As an interdisciplinary comprehensive subject involving multidisciplinary knowledge, emotional analysis has become a hot topic in psychology, health medicine and computer science. It has a high comprehensive and practical application value. Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research. The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period, so as to understand their normal state, abnormal state and the reason of state change from the information they wrote. In… More >

  • Open Access

    ARTICLE

    Identification of Weather Phenomena Based on Lightweight Convolutional Neural Networks

    Congcong Wang1, 2, 3, Pengyu Liu1, 2, 3, *, Kebin Jia1, 2, 3, Xiaowei Jia4, Yaoyao Li1, 2, 3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 2043-2055, 2020, DOI:10.32604/cmc.2020.010505

    Abstract Weather phenomenon recognition plays an important role in the field of meteorology. Nowadays, weather radars and weathers sensor have been widely used for weather recognition. However, given the high cost in deploying and maintaining the devices, it is difficult to apply them to intensive weather phenomenon recognition. Moreover, advanced machine learning models such as Convolutional Neural Networks (CNNs) have shown a lot of promise in meteorology, but these models also require intensive computation and large memory, which make it difficult to use them in reality. In practice, lightweight models are often used to solve such problems. However, lightweight models often… More >

  • Open Access

    ARTICLE

    Left or Right Hand Classification from Fingerprint Images Using a Deep Neural Network

    Junseob Kim1, Beanbonyka Rim1, Nak-Jun Sung1, Min Hong2, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 17-30, 2020, DOI:10.32604/cmc.2020.09044

    Abstract Fingerprint security technology has attracted a great deal of attention in recent years because of its unique biometric information that does not change over an individual’s lifetime and is a highly reliable and secure way to identify a certain individuals. AFIS (Automated Fingerprint Identification System) is a system used by Korean police for identifying a specific person by fingerprint. The AFIS system, however, only selects a list of possible candidates through fingerprints, the exact individual must be found by fingerprint experts. In this paper, we designed a deep learning system using deep convolution network to categorize fingerprints as coming from… More >

  • Open Access

    ABSTRACT

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 31-31, 2019, DOI:10.32604/mcb.2019.06983

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary plaque data from 5… More >

  • Open Access

    ARTICLE

    Underground Disease Detection Based on Cloud Computing and Attention Region Neural Network

    Pinjie Xu2, Ce Li1,2,*, Liguo Zhang3,4, Feng Yang1,2, Jing Zheng1,5, Jingwu Feng2

    Journal on Artificial Intelligence, Vol.1, No.1, pp. 9-18, 2019, DOI:10.32604/jai.2019.06157

    Abstract Detecting the underground disease is very crucial for the roadbed health monitoring and maintenance of transport facilities, since it is very closely related to the structural health and reliability with the rapid development of road traffic. Ground penetrating radar (GPR) is widely used to detect road and underground diseases. However, it is still a challenging task due to data access anywhere, transmission security and data processing on cloud. Cloud computing can provide scalable and powerful technologies for large-scale storage, processing and dissemination of GPR data. Combined with cloud computing and radar detection technology, it is possible to locate the underground… More >

  • Open Access

    ARTICLE

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 153-161, 2019, DOI:10.32604/mcb.2019.06873

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT coronary plaque data from 5… More >

  • Open Access

    ARTICLE

    Image Recognition of Breast Tumor Proliferation Level Based on Convolution Neural Network

    Junhao Yang1, Chunxiao Chen1,*, Qingyang Zang1, Jianfei Li1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 203-214, 2018, DOI:10.32604/mcb.2018.03824

    Abstract Pathological slide is increasingly applied in the diagnosis of breast tumors despite the issues of large amount of data, slow viewing and high subjectivity. To overcome these problems, a micrograph recognition method based on convolutional neural network is proposed for pathological slide of breast tumor. Combined with multi-channel threshold and watershed segmentation, a sample database including single cell, adhesive cell and invalid cell was established. Then, the convolution neural network with six layers is constructed, which has ability to classify the stained breast tumor cells with accuracy of more than 90%, and evaluate the proliferation level with relative error of… More >

  • Open Access

    ARTICLE

    Tumor Cell Identification in Ki-67 Images on Deep Learning

    Ruihan Zhang1,2, Junhao Yang1, Chunxiao Chen1,*

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 177-187, 2018, DOI: 10.3970/mcb.2018.04292

    Abstract The proportion of cells staining for the nuclear antigen Ki-67 is an important predictive indicator for assessment of tumor cell proliferation and growth in routine pathological investigation. Instead of traditional scoring methods based on the experience of a trained laboratory scientist, deep learning approach can be automatically used to analyze the expression of Ki-67 as well. Deep learning based on convolutional neural networks (CNN) for image classification and single shot multibox detector (SSD) for object detection are used to investigate the expression of Ki-67 for assessment of biopsies from patients with breast cancer in this study. The results focus on… More >

Displaying 71-80 on page 8 of 83. Per Page