Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique (SMOTE)… More >

  • Open Access


    Graph-Based Feature Learning for Cross-Project Software Defect Prediction

    Ahmed Abdu1, Zhengjun Zhai1,2, Hakim A. Abdo3, Redhwan Algabri4,*, Sungon Lee5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 161-180, 2023, DOI:10.32604/cmc.2023.043680

    Abstract Cross-project software defect prediction (CPDP) aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects. The existing CPDP approaches rely on static metrics or dynamic syntactic features, which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties, such as complex design patterns, relationships between multiple functions, and dependencies in different software projects, that are important for CPDP. This paper introduces a novel approach, a graph-based feature learning model for CPDP (GB-CPDP), that utilizes NetworkX to extract features and learn representations of program entities… More >

  • Open Access


    Defect Prediction Using Akaike and Bayesian Information Criterion

    Saleh Albahli1,*, Ghulam Nabi Ahmad Hassan Yar2

    Computer Systems Science and Engineering, Vol.41, No.3, pp. 1117-1127, 2022, DOI:10.32604/csse.2022.021750

    Abstract Data available in software engineering for many applications contains variability and it is not possible to say which variable helps in the process of the prediction. Most of the work present in software defect prediction is focused on the selection of best prediction techniques. For this purpose, deep learning and ensemble models have shown promising results. In contrast, there are very few researches that deals with cleaning the training data and selection of best parameter values from the data. Sometimes data available for training the models have high variability and this variability may cause a decrease in model accuracy. To… More >

  • Open Access


    Unsupervised Domain Adaptation Based on Discriminative Subspace Learning for Cross-Project Defect Prediction

    Ying Sun1, Yanfei Sun1,2,*, Jin Qi1, Fei Wu1, Xiao-Yuan Jing1,3, Yu Xue4, Zixin Shen5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3373-3389, 2021, DOI:10.32604/cmc.2021.016539

    Abstract Cross-project defect prediction (CPDP) aims to predict the defects on target project by using a prediction model built on source projects. The main problem in CPDP is the huge distribution gap between the source project and the target project, which prevents the prediction model from performing well. Most existing methods overlook the class discrimination of the learned features. Seeking an effective transferable model from the source project to the target project for CPDP is challenging. In this paper, we propose an unsupervised domain adaptation based on the discriminative subspace learning (DSL) approach for CPDP. DSL treats the data from two… More >

  • Open Access


    Within-Project and Cross-Project Software Defect Prediction Based on Improved Transfer Naive Bayes Algorithm

    Kun Zhu1, Nana Zhang1, Shi Ying1, *, Xu Wang2

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 891-910, 2020, DOI:10.32604/cmc.2020.08096

    Abstract With the continuous expansion of software scale, software update and maintenance have become more and more important. However, frequent software code updates will make the software more likely to introduce new defects. So how to predict the defects quickly and accurately on the software change has become an important problem for software developers. Current defect prediction methods often cannot reflect the feature information of the defect comprehensively, and the detection effect is not ideal enough. Therefore, we propose a novel defect prediction model named ITNB (Improved Transfer Naive Bayes) based on improved transfer Naive Bayesian algorithm in this paper, which… More >

Displaying 1-10 on page 1 of 5. Per Page