Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,842)
  • Open Access

    ARTICLE

    Functional Causality between Oil Prices and GDP Based on Big Data

    Ibrahim Mufrah Almanjahie1, 2, Zouaoui Chikr Elmezouar1, 2, 3, *, Ali Laksaci1, 2

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 593-604, 2020, DOI:10.32604/cmc.2020.08901 - 01 May 2020

    Abstract This paper examines the causal relationship between oil prices and the Gross Domestic Product (GDP) in the Kingdom of Saudi Arabia. The study is carried out by a data set collected quarterly, by Saudi Arabian Monetary Authority, over a period from 1974 to 2016. We seek how a change in real crude oil price affects the GDP of KSA. Based on a new technique, we treat this data in its continuous path. Precisely, we analyze the causality between these two variables, i.e., oil prices and GDP, by using their yearly curves observed in the four More >

  • Open Access

    ARTICLE

    Analysis and Process of Music Signals to Generate TwoDimensional Tabular Data and a New Music

    Oakyoung Han1, Jaehyoun Kim2, *

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 553-566, 2020, DOI:10.32604/cmc.2020.09362 - 01 May 2020

    Abstract The processing of sound signals is significantly improved recently. Technique for sound signal processing focusing on music beyond speech area is getting attention due to the development of deep learning techniques. This study is for analysis and process of music signals to generate tow-dimensional tabular data and a new music. For analysis and process part, we represented normalized waveforms for each of input data via frequency domain signals. Then we looked into shorted segment to see the difference wave pattern for different singers. Fourier transform is applied to get spectrogram of the music signals. Filterbank… More >

  • Open Access

    ARTICLE

    Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity

    Xiangao Jiang1, Megan Coffee2, 3, *, Anasse Bari4, *, Junzhang Wang4, Xinyue Jiang5, Jianping Huang1, Jichan Shi1, Jianyi Dai1, Jing Cai1, Tianxiao Zhang6, Zhengxing Wu1, Guiqing He1, Yitong Huang7

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 537-551, 2020, DOI:10.32604/cmc.2020.010691 - 30 March 2020

    Abstract The virus SARS-CoV2, which causes coronavirus disease (COVID-19) has become a pandemic and has spread to every inhabited continent. Given the increasing caseload, there is an urgent need to augment clinical skills in order to identify from among the many mild cases the few that will progress to critical illness. We present a first step towards building an artificial intelligence (AI) framework, with predictive analytics (PA) capabilities applied to real patient data, to provide rapid clinical decision-making support. COVID-19 has presented a pressing need as a) clinicians are still developing clinical acumen to this novel… More >

  • Open Access

    ARTICLE

    A Differentially Private Data Aggregation Method Based on Worker Partition and Location Obfuscation for Mobile Crowdsensing

    Shuyu Li1, Guozheng Zhang1, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 223-241, 2020, DOI:10.32604/cmc.2020.07499 - 30 March 2020

    Abstract With the popularity of sensor-rich mobile devices, mobile crowdsensing (MCS) has emerged as an effective method for data collection and processing. However, MCS platform usually need workers’ precise locations for optimal task execution and collect sensing data from workers, which raises severe concerns of privacy leakage. Trying to preserve workers’ location and sensing data from the untrusted MCS platform, a differentially private data aggregation method based on worker partition and location obfuscation (DP-DAWL method) is proposed in the paper. DP-DAWL method firstly use an improved K-means algorithm to divide workers into groups and assign different… More >

  • Open Access

    ARTICLE

    A DDoS Attack Information Fusion Method Based on CNN for Multi-Element Data

    Jieren Cheng1, 2, Canting Cai1, *, Xiangyan Tang1, Victor S. Sheng3, Wei Guo1, Mengyang Li1

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 131-150, 2020, DOI:10.32604/cmc.2020.06175 - 30 March 2020

    Abstract Traditional distributed denial of service (DDoS) detection methods need a lot of computing resource, and many of them which are based on single element have high missing rate and false alarm rate. In order to solve the problems, this paper proposes a DDoS attack information fusion method based on CNN for multi-element data. Firstly, according to the distribution, concentration and high traffic abruptness of DDoS attacks, this paper defines six features which are respectively obtained from the elements of source IP address, destination IP address, source port, destination port, packet size and the number of… More >

  • Open Access

    ARTICLE

    Research on the Measurement and Countermeasure of Coal Overcapacity in China: Based on Panel Data of 25 Provinces in China

    Rijia Ding1, Xingyao Zhou1,*, Rui Zhang1, Wanqiu Lu2

    Energy Engineering, Vol.117, No.1, pp. 27-39, 2020, DOI:10.32604/EE.2020.010372 - 28 February 2020

    Abstract Coal is the main energy source in China. At present, the coal overcapacity is still serious in China. Accurately measuring the degree of China’s coal overcapacity can scientifically resolve the overcapacity, and is the premise of guiding the healthy development of coal industry and energy system. Using the translog cost function and the panel data of coal industry in all provinces of China from 2002 to 2011 and from 2012 to 2016, the research measures and compares the coal production capacity of “golden decade” and “cold winter” in China. The results show that: (1) The More >

  • Open Access

    ARTICLE

    Analysis of Naval Ship Evacuation Using Stochastic Simulation Models and Experimental Data Sets

    Roberto Bellas1, *, Javier Martínez1, Ignacio Rivera2, Ramón Touza2, Miguel Gómez1, Rafael Carreño1

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 971-995, 2020, DOI:10.32604/cmes.2020.07530 - 01 March 2020

    Abstract The study of emergency evacuation in public spaces, buildings and large ships may present parallel characteristic in terms of complexity of the layout but there are also significant differences that can hindering passengers to reach muster stations or the lifeboats. There are many hazards on a ship that can cause an emergency evacuation, the most severe result in loss of lives. Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical. Recently, computer simulation has become an indispensable technology in various fields, among them, the evacuation models that recently evolved… More >

  • Open Access

    ARTICLE

    Classification and Research of Skin Lesions Based on Machine Learning

    Jian Liu1, Wantao Wang1, Jie Chen2, *, Guozhong Sun3, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1187-1200, 2020, DOI:10.32604/cmc.2020.05883

    Abstract Classification of skin lesions is a complex identification challenge. Due to the wide variety of skin lesions, doctors need to spend a lot of time and effort to judge the lesion image which zoomed through the dermatoscopy. The diagnosis which the algorithm of identifying pathological images assists doctors gets more and more attention. With the development of deep learning, the field of image recognition has made longterm progress. The effect of recognizing images through convolutional neural network models is better than traditional image recognition technology. In this work, we try to classify seven kinds of More >

  • Open Access

    ARTICLE

    A Review of Data Cleaning Methods for Web Information System

    Jinlin Wang1, Xing Wang1, *, Yuchen Yang1, Hongli Zhang1, Binxing Fang1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1053-1075, 2020, DOI:10.32604/cmc.2020.08675

    Abstract Web information system (WIS) is frequently-used and indispensable in daily social life. WIS provides information services in many scenarios, such as electronic commerce, communities, and edutainment. Data cleaning plays an essential role in various WIS scenarios to improve the quality of data service. In this paper, we present a review of the state-of-the-art methods for data cleaning in WIS. According to the characteristics of data cleaning, we extract the critical elements of WIS, such as interactive objects, application scenarios, and core technology, to classify the existing works. Then, after elaborating and analyzing each category, we More >

  • Open Access

    ARTICLE

    Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis

    Yingjun Wang1, Zhongyuan Liao1, Shengyu Shi1, *, Zhenpei Wang2, *, Leong Hien Poh3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 433-458, 2020, DOI:10.32604/cmes.2020.08680 - 01 February 2020

    Abstract Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity More >

Displaying 1601-1610 on page 161 of 1842. Per Page