Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,979)
  • Open Access

    ARTICLE

    Early GLP-1 Agonist Use and Cancer Risk in Type 2 Diabetes: A Real-World Data Cohort Study

    Cheng-Hsun Chuang1,2,3,#, Ping-Kun Tsai3,4,5,6,#, Shih-Wen Kao7,8, Yu-Hsun Wang8,9,*, Chao-Bin Yeh1,2,3,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.072875 - 30 December 2025

    Abstract Background: To determine whether initiating a glucagon-like peptide-1 receptor agonist (GLP-1 RA) within 3 months of type 2 diabetes (T2DM) diagnosis alters the subsequent risk of overall and site-specific cancer and whether this association differs by baseline body-mass index (BMI). Methods: This retrospective cohort study used electronic health records from the TriNetX U.S. research network. Adults aged 20 years or older diagnosed with T2DM between 2016 and 2024 were included if they received any hypoglycemic agents within 3 months before and after diagnosis. Following 1:1 propensity score matching, both the GLP-1 RA user and non-user… More > Graphic Abstract

    Early GLP-1 Agonist Use and Cancer Risk in Type 2 Diabetes: A Real-World Data Cohort Study

  • Open Access

    ARTICLE

    Graph-Based Unified Settlement Framework for Complex Electricity Markets: Data Integration and Automated Refund Clearing

    Xiaozhe Guo1, Suyan Long2, Ziyu Yue2, Yifan Wang2, Guanting Yin1, Yuyang Wang1, Zhaoyuan Wu1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069820 - 27 December 2025

    Abstract The increasing complexity of China’s electricity market creates substantial challenges for settlement automation, data consistency, and operational scalability. Existing provincial settlement systems are fragmented, lack a unified data structure, and depend heavily on manual intervention to process high-frequency and retroactive transactions. To address these limitations, a graph-based unified settlement framework is proposed to enhance automation, flexibility, and adaptability in electricity market settlements. A flexible attribute-graph model is employed to represent heterogeneous multi-market data, enabling standardized integration, rapid querying, and seamless adaptation to evolving business requirements. An extensible operator library is designed to support configurable settlement… More >

  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    Research on Integrating Deep Learning-Based Vehicle Brand and Model Recognition into a Police Intelligence Analysis Platform

    Shih-Lin Lin*, Cheng-Wei Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071915 - 09 December 2025

    Abstract This study focuses on developing a deep learning model capable of recognizing vehicle brands and models, integrated with a law enforcement intelligence platform to overcome the limitations of existing license plate recognition techniques—particularly in handling counterfeit, obscured, or absent plates. The research first entailed collecting, annotating, and classifying images of various vehicle models, leveraging image processing and feature extraction methodologies to train the model on Microsoft Custom Vision. Experimental results indicate that, for most brands and models, the system achieves stable and relatively high performance in Precision, Recall, and Average Precision (AP). Furthermore, simulated tests… More >

  • Open Access

    REVIEW

    Dual-Mode Data-Driven Iterative Learning Control: Applications in Precision Manufacturing and Intelligent Transportation Systems

    Lei Wang1,2, Menghan Wei2, Ziwei Huangfu3, Shunjie Zhu2, Xuejian Ge1,*, Zhengquan Li4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-32, 2026, DOI:10.32604/cmc.2025.071295 - 09 December 2025

    Abstract Iterative Learning Control (ILC) provides an effective framework for optimizing repetitive tasks, making it particularly suitable for high-precision applications in both precision manufacturing and intelligent transportation systems (ITS). This paper presents a systematic review of ILC’s developmental progress, current methodologies, and practical implementations across these two critical domains. The review first analyzes the key technical challenges encountered when integrating ILC into precision manufacturing workflows. Through case studies, it evaluates demonstrated improvements in positioning accuracy, surface finish quality, and production throughput. Furthermore, the study examines ILC’s applications in ITS, with particular focus on vehicular motion control More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025

    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

  • Open Access

    ARTICLE

    Classification of Job Offers into Job Positions Using NET and BERT Language Models

    Lino Gonzalez-Garcia*, Miguel-Angel Sicilia, Elena García-Barriocanal

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070813 - 09 December 2025

    Abstract Classifying job offers into occupational categories is a fundamental task in human resource information systems, as it improves and streamlines indexing, search, and matching between openings and job seekers. Comprehensive occupational databases such as NET or ESCO provide detailed taxonomies of interrelated positions that can be leveraged to align the textual content of postings with occupational categories, thereby facilitating standardization, cross-system interoperability, and access to metadata for each occupation (e.g., tasks, knowledge, skills, and abilities). In this work, we explore the effectiveness of fine-tuning existing language models (LMs) to classify job offers with occupational descriptors… More >

  • Open Access

    ARTICLE

    Improving Person Recognition for Single-Person-in-Photos: Intimacy in Photo Collections

    Xiaoyi Duan, Tianqi Zou, Chenyang Wang, Yu Gu, Xiuying Li*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070683 - 09 December 2025

    Abstract Person recognition in photo collections is a critical yet challenging task in computer vision. Previous studies have used social relationships within photo collections to address this issue. However, these methods often fail when performing single-person-in-photos recognition in photo collections, as they cannot rely on social connections for recognition. In this work, we discard social relationships and instead measure the relationships between photos to solve this problem. We designed a new model that includes a multi-parameter attention network for adaptively fusing visual features and a unified formula for measuring photo intimacy. This model effectively recognizes individuals More >

  • Open Access

    ARTICLE

    Detection Method for Bolt Loosening of Fan Base through Bayesian Learning with Small Dataset: A Real-World Application

    Zhongyun Tang1,2,3, Hanyi Xu2, Haiyang Hu1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-29, 2026, DOI:10.32604/cmc.2025.070616 - 09 December 2025

    Abstract With the deep integration of smart manufacturing and IoT technologies, higher demands are placed on the intelligence and real-time performance of industrial equipment fault detection. For industrial fans, base bolt loosening faults are difficult to identify through conventional spectrum analysis, and the extreme scarcity of fault data leads to limited training datasets, making traditional deep learning methods inaccurate in fault identification and incapable of detecting loosening severity. This paper employs Bayesian Learning by training on a small fault dataset collected from the actual operation of axial-flow fans in a factory to obtain posterior distribution. This More >

  • Open Access

    ARTICLE

    Hesitation Analysis with Kullback Leibler Divergence and Its Calculation on Temporal Data

    Sanghyuk Lee1, Eunmi Lee2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.070504 - 09 December 2025

    Abstract Hesitation analysis plays a crucial role in decision-making processes by capturing the intermediary position between supportive and opposing information. This study introduces a refined approach to addressing uncertainty in decision-making, employing existing measures used in decision problems. Building on information theory, the Kullback–Leibler (KL) divergence is extended to incorporate additional insights, specifically by applying temporal data, as illustrated by time series data from two datasets (e.g., affirmative and dissent information). Cumulative hesitation provides quantifiable insights into the decision-making process. Accordingly, a modified KL divergence, which incorporates historical trends, is proposed, enabling dynamic updates using conditional More >

Displaying 1-10 on page 1 of 1979. Per Page