Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    On the Application of the Adomian’s Decomposition Method to a Generalized Thermoelastic Infinite Medium with a Spherical Cavity in the Framework Three Different Models

    Najat A. Alghamdi1, Hamdy M. Youssef2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.5, pp. 597-611, 2019, DOI:10.32604/fdmp.2019.05131

    Abstract A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity. A generalized set of governing equations is formulated in the context of three different models of thermoelasticity: the Biot model, also known as “coupled thermoelasticity” model; the Lord-Shulman model, also referred to as “generalized thermoelasticity with one-relaxation time” approach; and the Green-Lindsay model, also called “generalized thermoelasticity with two-relaxation times” approach. The Adomian’s decomposition method is used to solve the related mathematical problem. The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain. Numerical results for the temperature,… More >

  • Open Access

    ABSTRACT

    Development of Large-Scale Finite Element Solver for Wind Turbine Blade Structure Using Balancing Domain Decomposition Methods

    Yasunori Yusa1,*, Tomoshi Miyamura2, Tomonori Yamada3, Shinobu Yoshimura3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.3, pp. 58-58, 2019, DOI:10.32604/icces.2019.05231

    Abstract In a wind turbine blade, laminated plates consisting of fiber reinforced plastic materials are generally used due to its high specific strength. We have been developing a large-scale finite element solver to analyze the wind turbine blade structure. For such a structure, the laminated finite element is frequently used in modeling. Each laminated finite element has multiple layers, each of which is an orthotropic body in order to model the layered fiber reinforced materials with different fiber directions. Also, since a realistic wind turbine blade structure generally requires a large number of finite elements for discretization, we adopted a domain… More >

  • Open Access

    ARTICLE

    Eigenanalysis for Membranes with Stringers Using the Methods of Fundamental Solutions and Domain Decomposition

    C.W. Chen1, C.M. Fan1, D.L. Young1,2, K. Murugesan1, C.C Tsai3

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.1, pp. 29-44, 2005, DOI:10.3970/cmes.2005.008.029

    Abstract We use a meshless numerical method to analyze the eigenanalysis of thin circular membranes with degenerate boundary conditions, composed by different orientations and structures of stringers. The membrane eigenproblem is studied by solving the two-dimensional Helmholtz equation utilizing the method of fundamental solutions and domain decomposition technique as well. The method of singular value decomposition is adopted to obtain eigenvalues and eigenvectors of the resulting system of global linear equation. The proposed novel numerical scheme was first validated by three circular membranes which are structured with a single edge stringer, two opposite edge stringers and an internal stringer. Present results… More >

  • Open Access

    ARTICLE

    Eddy Current Analyses by Domain Decomposition Method Using Double-Double Precision

    Mizuma Takehito1,*, Takei Amane1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 349-363, 2018, DOI: 10.31614/cmes.2018.01714

    Abstract A matrix equation solved in an eddy current analysis, A-ϕ method based on a domain decomposition method becomes a complex symmetric system. In general, iterative method is used as the solver. Convergence of iterative method in an interface problem is improved by increasing an accuracy of a solution of an iterative method of a subdomain problem. However, it is difficult to improve the convergence by using a small convergence criterion in the subdomain problem. Therefore, authors propose a method to introduce double-double precision into the interface problem and the subdomain problem. This proposed method improves the convergence of the interface… More >

  • Open Access

    ARTICLE

    A Unification of the Concepts of the Variational Iteration, Adomian Decomposition and Picard Iteration Methods; and a Local Variational Iteration Method

    Xuechuan Wang1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.6, pp. 567-585, 2016, DOI:10.3970/cmes.2016.111.567

    Abstract This paper compares the variational iteration method (VIM), the Adomian decomposition method (ADM) and the Picard iteration method (PIM) for solving a system of first order nonlinear ordinary differential equations (ODEs). A unification of the concepts underlying these three methods is attempted by considering a very general iterative algorithm for VIM. It is found that all the three methods can be regarded as special cases of using a very general matrix of Lagrange multipliers in the iterative algorithm of VIM. The global variational iteration method is briefly reviewed, and further recast into a Local VIM, which is much more convenient… More >

  • Open Access

    ARTICLE

    How to Select the Value of the Convergence Parameter in the Adomian Decomposition Method

    Lei Lu1,2, Jun-Sheng Duan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 35-52, 2014, DOI:10.3970/cmes.2014.097.035

    Abstract In this paper, we investigate the problem of selecting of the convergence parameter c in the Adomian decomposition method. Through the curves of the n-term approximations Φn(t;c) versus c for different specified values of n and t, we demonstrate how to determine the value of c such that the decomposition series has a larger effective region of convergence. More >

  • Open Access

    ARTICLE

    Investigation of Squeezing Unsteady Nanofluid Flow Using the Modified Decomposition Method

    Lei Lu1,2, Li-Hua Liu3,4, Xiao-Xiao Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.1, pp. 1-15, 2014, DOI:10.3970/cmes.2014.101.001

    Abstract In this paper, we use the modified decomposition method (MDM) to solve the unsteady flow of a nanofluid squeezing between two parallel equations. Copper as nanoparticle with water as its base fluid has considered. The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell- Garnetts (MG) and Brinkman models, respectively. The effects of the squeeze number, the nanofluid volume fraction, Eckert number, δ on Nusselt number and the Prandtl number are investigated. The figures and tables clearly show high accuracy of the method to solve the unsteady flow. More >

  • Open Access

    ARTICLE

    Solving the Lane–Emden–Fowler Type Equations of Higher Orders by the Adomian Decomposition Method

    Abdul-Majid Wazwaz1, R,olph Rach2, Lazhar Bougoffa3, Jun-Sheng Duan4, 5

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 507-529, 2014, DOI:10.3970/cmes.2014.100.507

    Abstract In this paper, we construct the Lane–Emden–Fowler type equations of higher orders. We study the linear and the nonlinear Lane–Emden–Fowler type equations of the third and fourth orders, where other forms can be treated in a similar manner. We use the systematic Adomian decomposition method to handle these types of equations with specified initial conditions. We confirm that the Adomian decomposition method provides an efficient algorithm for exact and approximate analytic solutions of these equations. We corroborate this study by investigating several numerical examples that emphasize initial value problems. More >

  • Open Access

    ARTICLE

    Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method

    Lei Lu1,2,3, Jun-Sheng Duan2, Long-Zhen Fan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 463-475, 2014, DOI:10.3970/cmes.2014.100.463

    Abstract In this paper, the modified decomposition method (MDM) for solving the nonlinear two-dimensional viscous flow equations is presented. This study investigates the problem of laminar, isothermal, incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during successive expansions or contractions. We first transform the original two-dimensional viscous flow problem into an equivalent fourth-order boundary value problem (BVP), then solve the problem by the MDM. The figures and tables clearly show high accuracy of the method to solve two-dimensional viscous flow. More >

  • Open Access

    ARTICLE

    Parallel Control-volume Method Based on Compact Local Integrated RBFs for the Solution of Fluid Flow Problems

    N. Pham-Sy1, C.-D. Tran1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 363-397, 2014, DOI:10.3970/cmes.2014.100.363

    Abstract In this paper, a high performance computing method based on the Integrated Radial Basis Function (IRBF), Control Volume (CV) and Domain Decomposition technique for solving Partial Differential Equations is presented. The goal is to develop an efficient parallel algorithm based on the Compact Local IRBF method using the CV approach, especially for problems with non-rectangular domain. The results showed that the goal is achieved as the computational efficiency is quite significant. For the case of square lid driven cavity problem with Renoylds number 100, super-linear speed-up is also achieved. The parallel algorithm is implemented in the Matlab environment using Parallel… More >

Displaying 11-20 on page 2 of 30. Per Page