Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,631)
  • Open Access

    ARTICLE

    Joint Rain Streaks & Haze Removal Network for Object Detection

    Ragini Thatikonda1, Prakash Kodali1,*, Ramalingaswamy Cheruku2, Eswaramoorthy K.V3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4683-4702, 2024, DOI:10.32604/cmc.2024.051844

    Abstract In the realm of low-level vision tasks, such as image deraining and dehazing, restoring images distorted by adverse weather conditions remains a significant challenge. The emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks (CNNs), supplanting traditional methods reliant on prior knowledge. However, the evolution of CNN architectures has tended towards increasing complexity, utilizing intricate structures to enhance performance, often at the expense of computational efficiency. In response, we propose the Selective Kernel Dense Residual M-shaped Network (SKDRMNet), a flexible solution adept at balancing computational efficiency with network accuracy. A… More >

  • Open Access

    ARTICLE

    A Robust Approach for Multi Classification-Based Intrusion Detection through Stacking Deep Learning Models

    Samia Allaoua Chelloug*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4845-4861, 2024, DOI:10.32604/cmc.2024.051539

    Abstract Intrusion detection is a predominant task that monitors and protects the network infrastructure. Therefore, many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection. In particular, the Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) is an extensively used benchmark dataset for evaluating intrusion detection systems (IDSs) as it incorporates various network traffic attacks. It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models, but the performance of these models often decreases when evaluated on… More >

  • Open Access

    ARTICLE

    Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network

    Tingting Su1, Jia Wang1,*, Wei Hu2,*, Gaoqiang Dong1, Jeon Gwanggil3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4433-4448, 2024, DOI:10.32604/cmc.2024.051535

    Abstract Along with the progression of Internet of Things (IoT) technology, network terminals are becoming continuously more intelligent. IoT has been widely applied in various scenarios, including urban infrastructure, transportation, industry, personal life, and other socio-economic fields. The introduction of deep learning has brought new security challenges, like an increment in abnormal traffic, which threatens network security. Insufficient feature extraction leads to less accurate classification results. In abnormal traffic detection, the data of network traffic is high-dimensional and complex. This data not only increases the computational burden of model training but also makes information extraction more… More >

  • Open Access

    ARTICLE

    Deep Learning-Based ECG Classification for Arterial Fibrillation Detection

    Muhammad Sohail Irshad1,2,*, Tehreem Masood1,2, Arfan Jaffar1,2, Muhammad Rashid3, Sheeraz Akram1,2,4,*, Abeer Aljohani5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4805-4824, 2024, DOI:10.32604/cmc.2024.050931

    Abstract The application of deep learning techniques in the medical field, specifically for Atrial Fibrillation (AFib) detection through Electrocardiogram (ECG) signals, has witnessed significant interest. Accurate and timely diagnosis increases the patient’s chances of recovery. However, issues like overfitting and inconsistent accuracy across datasets remain challenges. In a quest to address these challenges, a study presents two prominent deep learning architectures, ResNet-50 and DenseNet-121, to evaluate their effectiveness in AFib detection. The aim was to create a robust detection mechanism that consistently performs well. Metrics such as loss, accuracy, precision, sensitivity, and Area Under the Curve… More >

  • Open Access

    ARTICLE

    Vehicle Abnormal Behavior Detection Based on Dense Block and Soft Thresholding

    Yuanyao Lu1,*, Wei Chen2, Zhanhe Yu1, Jingxuan Wang1, Chaochao Yang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5051-5066, 2024, DOI:10.32604/cmc.2024.050865

    Abstract With the rapid advancement of social economies, intelligent transportation systems are gaining increasing attention. Central to these systems is the detection of abnormal vehicle behavior, which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions. Current research on detecting abnormal traffic behaviors is still nascent, with significant room for improvement in recognition accuracy. To address this, this research has developed a new model for recognizing abnormal traffic behaviors. This model employs the R3D network as its core architecture, incorporating a dense block to facilitate feature reuse. This… More >

  • Open Access

    ARTICLE

    CNN Channel Attention Intrusion Detection System Using NSL-KDD Dataset

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4319-4347, 2024, DOI:10.32604/cmc.2024.050586

    Abstract Intrusion detection systems (IDS) are essential in the field of cybersecurity because they protect networks from a wide range of online threats. The goal of this research is to meet the urgent need for small-footprint, highly-adaptable Network Intrusion Detection Systems (NIDS) that can identify anomalies. The NSL-KDD dataset is used in the study; it is a sizable collection comprising 43 variables with the label’s “attack” and “level.” It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks (CNN). Furthermore, this dataset makes it easier to conduct… More >

  • Open Access

    ARTICLE

    Research on Sarcasm Detection Technology Based on Image-Text Fusion

    Xiaofang Jin1, Yuying Yang1,*, Yinan Wu1, Ying Xu2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5225-5242, 2024, DOI:10.32604/cmc.2024.050384

    Abstract The emergence of new media in various fields has continuously strengthened the social aspect of social media. Netizens tend to express emotions in social interactions, and many people even use satire, metaphors, and other techniques to express some negative emotions, it is necessary to detect sarcasm in social comment data. For sarcasm, the more reference data modalities used, the better the experimental effect. This paper conducts research on sarcasm detection technology based on image-text fusion data. To effectively utilize the features of each modality, a feature reconstruction output algorithm is proposed. This algorithm is based… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    A New Framework for Software Vulnerability Detection Based on an Advanced Computing

    Bui Van Cong1, Cho Do Xuan2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3699-3723, 2024, DOI:10.32604/cmc.2024.050019

    Abstract The detection of software vulnerabilities written in C and C++ languages takes a lot of attention and interest today. This paper proposes a new framework called DrCSE to improve software vulnerability detection. It uses an intelligent computation technique based on the combination of two methods: Rebalancing data and representation learning to analyze and evaluate the code property graph (CPG) of the source code for detecting abnormal behavior of software vulnerabilities. To do that, DrCSE performs a combination of 3 main processing techniques: (i) building the source code feature profiles, (ii) rebalancing data, and (iii) contrastive… More >

  • Open Access

    ARTICLE

    A Deepfake Detection Algorithm Based on Fourier Transform of Biological Signal

    Yin Ni1, Wu Zeng2,*, Peng Xia1, Guang Stanley Yang3, Ruochen Tan4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5295-5312, 2024, DOI:10.32604/cmc.2024.049911

    Abstract Deepfake-generated fake faces, commonly utilized in identity-related activities such as political propaganda, celebrity impersonations, evidence forgery, and familiar fraud, pose new societal threats. Although current deepfake generators strive for high realism in visual effects, they do not replicate biometric signals indicative of cardiac activity. Addressing this gap, many researchers have developed detection methods focusing on biometric characteristics. These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography (rPPG) signal, resulting in high detection accuracy. However, in the spectral analysis, existing approaches often only consider the power spectral density… More >

Displaying 1-10 on page 1 of 1631. Per Page