Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,555)
  • Open Access

    ARTICLE

    SAM Era: Can It Segment Any Industrial Surface Defects?

    Kechen Song1,2,*, Wenqi Cui2, Han Yu1, Xingjie Li1, Yunhui Yan2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3953-3969, 2024, DOI:10.32604/cmc.2024.048451

    Abstract Segment Anything Model (SAM) is a cutting-edge model that has shown impressive performance in general object segmentation. The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model. Due to its superior performance in general object segmentation, it quickly gained attention and interest. This makes SAM particularly attractive in industrial surface defect segmentation, especially for complex industrial scenes with limited training data. However, its segmentation ability for specific industrial scenes remains unknown. Therefore, in this work, we select three representative and complex industrial surface defect detection scenarios, namely strip steel surface defects, tile surface defects,… More >

  • Open Access

    ARTICLE

    Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer

    Changfeng Feng1, Chunping Wang2, Dongdong Zhang1, Renke Kou1, Qiang Fu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3993-4013, 2024, DOI:10.32604/cmc.2024.048351

    Abstract Transformer-based models have facilitated significant advances in object detection. However, their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle (UAV) imagery. Addressing these limitations, we propose a hybrid transformer-based detector, H-DETR, and enhance it for dense small objects, leading to an accurate and efficient model. Firstly, we introduce a hybrid transformer encoder, which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently. Furthermore, we propose two novel strategies to enhance detection performance without incurring additional inference computation. Query filter is designed… More >

  • Open Access

    ARTICLE

    Lightweight Cross-Modal Multispectral Pedestrian Detection Based on Spatial Reweighted Attention Mechanism

    Lujuan Deng, Ruochong Fu*, Zuhe Li, Boyi Liu, Mengze Xue, Yuhao Cui

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4071-4089, 2024, DOI:10.32604/cmc.2024.048200

    Abstract Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the… More >

  • Open Access

    ARTICLE

    Enhancing PDF Malware Detection through Logistic Model Trees

    Muhammad Binsawad*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3645-3663, 2024, DOI:10.32604/cmc.2024.048183

    Abstract Malware is an ever-present and dynamic threat to networks and computer systems in cybersecurity, and because of its complexity and evasiveness, it is challenging to identify using traditional signature-based detection approaches. The study article discusses the growing danger to cybersecurity that malware hidden in PDF files poses, highlighting the shortcomings of conventional detection techniques and the difficulties presented by adversarial methodologies. The article presents a new method that improves PDF virus detection by using document analysis and a Logistic Model Tree. Using a dataset from the Canadian Institute for Cybersecurity, a comparative analysis is carried out with well-known machine learning… More >

  • Open Access

    ARTICLE

    A Security Trade-Off Scheme of Anomaly Detection System in IoT to Defend against Data-Tampering Attacks

    Bing Liu1, Zhe Zhang1, Shengrong Hu2, Song Sun3,*, Dapeng Liu4, Zhenyu Qiu5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4049-4069, 2024, DOI:10.32604/cmc.2024.048099

    Abstract Internet of Things (IoT) is vulnerable to data-tampering (DT) attacks. Due to resource limitations, many anomaly detection systems (ADSs) for IoT have high false positive rates when detecting DT attacks. This leads to the misreporting of normal data, which will impact the normal operation of IoT. To mitigate the impact caused by the high false positive rate of ADS, this paper proposes an ADS management scheme for clustered IoT. First, we model the data transmission and anomaly detection in clustered IoT. Then, the operation strategy of the clustered IoT is formulated as the running probabilities of all ADSs deployed on… More >

  • Open Access

    ARTICLE

    Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models

    Mahmood A. Mahmood1,2,*, Khalaf Alsalem1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3431-3448, 2024, DOI:10.32604/cmc.2024.047604

    Abstract Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image dataset is augmented using techniques such as… More >

  • Open Access

    ARTICLE

    Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation

    Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336

    Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion features are extracted to mitigate… More >

  • Open Access

    ARTICLE

    Fake News Detection Based on Text-Modal Dominance and Fusing Multiple Multi-Model Clues

    Lifang Fu1, Huanxin Peng2,*, Changjin Ma2, Yuhan Liu2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4399-4416, 2024, DOI:10.32604/cmc.2024.047053

    Abstract In recent years, how to efficiently and accurately identify multi-model fake news has become more challenging. First, multi-model data provides more evidence but not all are equally important. Secondly, social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical. Unfortunately, existing approaches fail to handle these problems. This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues (TD-MMC), which utilizes three valuable multi-model clues: text-model importance, text-image complementary, and text-image inconsistency. TD-MMC is dominated by textural content and… More >

  • Open Access

    ARTICLE

    Covalent Bond Based Android Malware Detection Using Permission and System Call Pairs

    Rahul Gupta1, Kapil Sharma1,*, R. K. Garg2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4283-4301, 2024, DOI:10.32604/cmc.2024.046890

    Abstract The prevalence of smartphones is deeply embedded in modern society, impacting various aspects of our lives. Their versatility and functionalities have fundamentally changed how we communicate, work, seek entertainment, and access information. Among the many smartphones available, those operating on the Android platform dominate, being the most widely used type. This widespread adoption of the Android OS has significantly contributed to increased malware attacks targeting the Android ecosystem in recent years. Therefore, there is an urgent need to develop new methods for detecting Android malware. The literature contains numerous works related to Android malware detection. As far as our understanding… More >

  • Open Access

    ARTICLE

    CL2ES-KDBC: A Novel Covariance Embedded Selection Based on Kernel Distributed Bayes Classifier for Detection of Cyber-Attacks in IoT Systems

    Talal Albalawi, P. Ganeshkumar*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3511-3528, 2024, DOI:10.32604/cmc.2024.046396

    Abstract The Internet of Things (IoT) is a growing technology that allows the sharing of data with other devices across wireless networks. Specifically, IoT systems are vulnerable to cyberattacks due to its opennes The proposed work intends to implement a new security framework for detecting the most specific and harmful intrusions in IoT networks. In this framework, a Covariance Linear Learning Embedding Selection (CL2ES) methodology is used at first to extract the features highly associated with the IoT intrusions. Then, the Kernel Distributed Bayes Classifier (KDBC) is created to forecast attacks based on the probability distribution value precisely. In addition, a… More >

Displaying 1-10 on page 1 of 1555. Per Page