Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (386)
  • Open Access

    CASE REPORT

    Diagnosis and management of a rare paratesticular venous malformation in a pediatric patient

    D.C. Leslie1,#, V.M. Ramakrishnan2,#, J. Putra3, H.J. Paltiel4, H. Thaker2,*

    Canadian Journal of Urology, Vol.32, No.1, pp. 43-46, 2025, DOI:10.32604/cju.2025.064688 - 20 March 2025

    Abstract A 14-year-old presented with an asymptomatic left testicular mass after a brief episode of pain. Examination showed a non-tender left testis that was significantly larger than the right. Ultrasound revealed a 4.5-cm avascular mass and an absence of normal testicular parenchyma. Tumor markers were unremarkable. A CT scan demonstrated no lymphadenopathy but identified a prominent left spermatic cord. Due to a suspicion of chronic torsion vs. malignancy, a left radical orchiectomy was performed. Pathology identified a hemorrhagic paratesticular venous malformation without signs of germ cell neoplasia, a rare entity. More >

  • Open Access

    ARTICLE

    A Knowledge-Enhanced Disease Diagnosis Method Based on Prompt Learning and BERT Integration

    Zheng Zhang, Hengyang Wu*, Na Wang

    Journal on Artificial Intelligence, Vol.7, pp. 17-37, 2025, DOI:10.32604/jai.2025.059607 - 19 March 2025

    Abstract This paper proposes a knowledge-enhanced disease diagnosis method based on a prompt learning framework. Addressing challenges such as the complexity of medical terminology, the difficulty of constructing medical knowledge graphs, and the scarcity of medical data, the method retrieves structured knowledge from clinical cases via external knowledge graphs. The method retrieves structured knowledge from external knowledge graphs related to clinical cases, encodes it, and injects it into the prompt templates to enhance the language model’s understanding and reasoning capabilities for the task. We conducted experiments on three public datasets: CHIP-CTC, IMCS-V2-NER, and KUAKE-QTR. The results More >

  • Open Access

    ARTICLE

    Harmonization of Heart Disease Dataset for Accurate Diagnosis: A Machine Learning Approach Enhanced by Feature Engineering

    Ruhul Amin1, Md. Jamil Khan1, Tonway Deb Nath1, Md. Shamim Reza2, Jungpil Shin3,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3907-3919, 2025, DOI:10.32604/cmc.2025.061645 - 06 March 2025

    Abstract Heart disease includes a multiplicity of medical conditions that affect the structure, blood vessels, and general operation of the heart. Numerous researchers have made progress in correcting and predicting early heart disease, but more remains to be accomplished. The diagnostic accuracy of many current studies is inadequate due to the attempt to predict patients with heart disease using traditional approaches. By using data fusion from several regions of the country, we intend to increase the accuracy of heart disease prediction. A statistical approach that promotes insights triggered by feature interactions to reveal the intricate pattern… More >

  • Open Access

    ARTICLE

    A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4161-4179, 2025, DOI:10.32604/cmc.2025.061497 - 06 March 2025

    Abstract A healthy brain is vital to every person since the brain controls every movement and emotion. Sometimes, some brain cells grow unexpectedly to be uncontrollable and cancerous. These cancerous cells are called brain tumors. For diagnosed patients, their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans. Nowadays, Physicians and radiologists rely on Magnetic Resonance Imaging (MRI) pictures for their clinical evaluations of brain tumors. These evaluations are time-consuming, expensive, and require expertise with high skills to provide an accurate diagnosis. Scholars and industrials have recently partnered to implement… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on MTF Encoding and CBAM-LCNN Mechanism

    Wei Liu1, Sen Liu2,3,*, Yinchao He2, Jiaojiao Wang1, Yu Gu1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4863-4880, 2025, DOI:10.32604/cmc.2025.059295 - 06 March 2025

    Abstract To address the issues of slow diagnostic speed, low accuracy, and poor generalization performance in traditional rolling bearing fault diagnosis methods, we propose a rolling bearing fault diagnosis method based on Markov Transition Field (MTF) image encoding combined with a lightweight convolutional neural network that integrates a Convolutional Block Attention Module (CBAM-LCNN). Specifically, we first use the Markov Transition Field to convert the original one-dimensional vibration signals of rolling bearings into two-dimensional images. Then, we construct a lightweight convolutional neural network incorporating the convolutional attention module (CBAM-LCNN). Finally, the two-dimensional images obtained from MTF mapping… More >

  • Open Access

    ARTICLE

    A Chart-Based Diagnostic Model for Tight Gas Reservoirs Based on Shut-in Pressure during Hydraulic Fracturing

    Mingqiang Wei1,*, Neng Yang1, Han Zou2, Anhao Li3, Yonggang Duan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 309-324, 2025, DOI:10.32604/fdmp.2024.058454 - 06 March 2025

    Abstract A precise diagnosis of the complex post-fracturing characteristics and parameter variations in tight gas reservoirs is essential for optimizing fracturing technology, enhancing treatment effectiveness, and assessing post-fracturing production capacity. Tight gas reservoirs face challenges due to the interaction between natural fractures and induced fractures. To address these issues, a theoretical model for diagnosing fractures under varying leak-off mechanisms has been developed, incorporating the closure behavior of natural fractures. This model, grounded in material balance theory, also accounts for shut-in pressure. The study derived and plotted typical G-function charts, which capture fracture behavior during closure. By More > Graphic Abstract

    A Chart-Based Diagnostic Model for Tight Gas Reservoirs Based on Shut-in Pressure during Hydraulic Fracturing

  • Open Access

    ARTICLE

    Feature Engineering Methods for Analyzing Blood Samples for Early Diagnosis of Hepatitis Using Machine Learning Approaches

    Mohamed A.G. Hazber1,*, Ebrahim Mohammed Senan2,3, Hezam Saud Alrashidi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3229-3254, 2025, DOI:10.32604/cmes.2025.062302 - 03 March 2025

    Abstract Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions, and it has many types, from normal to serious. Hepatitis is diagnosed through many blood tests and factors; Artificial Intelligence (AI) techniques have played an important role in early diagnosis and help physicians make decisions. This study evaluated the performance of Machine Learning (ML) algorithms on the hepatitis data set. The dataset contains missing values that have been processed and outliers removed. The dataset was counterbalanced by the Synthetic Minority Over-sampling Technique (SMOTE). The features of the data set were processed… More >

  • Open Access

    REVIEW

    An Iterative PRISMA Review of GAN Models for Image Processing, Medical Diagnosis, and Network Security

    Uddagiri Sirisha1,*, Chanumolu Kiran Kumar2, Sujatha Canavoy Narahari3, Parvathaneni Naga Srinivasu4,5,6

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1757-1810, 2025, DOI:10.32604/cmc.2024.059715 - 17 February 2025

    Abstract The growing spectrum of Generative Adversarial Network (GAN) applications in medical imaging, cyber security, data augmentation, and the field of remote sensing tasks necessitate a sharp spike in the criticality of review of Generative Adversarial Networks. Earlier reviews that targeted reviewing certain architecture of the GAN or emphasizing a specific application-oriented area have done so in a narrow spirit and lacked the systematic comparative analysis of the models’ performance metrics. Numerous reviews do not apply standardized frameworks, showing gaps in the efficiency evaluation of GANs, training stability, and suitability for specific tasks. In this work,… More >

  • Open Access

    ARTICLE

    LIRB-Based Quantum Circuit Fidelity Assessment and Gate Fault Diagnosis

    Mengdi Yang, Feng Yue, Weilong Wang, Xiangdong Meng, Lixin Wang, Pengyu Han, Haoran He, Benzheng Yuan, Zhiqiang Fan, Chenhui Wang, Qiming Du, Danyang Zheng, Xuefei Feng, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2215-2233, 2025, DOI:10.32604/cmc.2024.058163 - 17 February 2025

    Abstract Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively… More >

  • Open Access

    ARTICLE

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

    Yuheng Yin, Jiahao Song*, Minghui Yang

    Energy Engineering, Vol.122, No.2, pp. 709-731, 2025, DOI:10.32604/ee.2024.059021 - 31 January 2025

    Abstract The lithium battery is an essential component of electric cars; prompt and accurate problem detection is vital in guaranteeing electric cars’ safe and dependable functioning and addressing the limitations of Back Propagation (BP) neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series, and the limitations of Long-Short Term Memory (LSTM) neural network models in terms of risk of overfitting. A method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium battery fault diagnosis. First, a lithium battery model is constructed… More > Graphic Abstract

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

Displaying 1-10 on page 1 of 386. Per Page