Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (356)
  • Open Access

    REVIEW

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

    Md Naeem Hossain1, Md Mustafizur Rahman1,2,*, Devarajan Ramasamy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 951-996, 2024, DOI:10.32604/cmes.2024.056022 - 27 September 2024

    Abstract Conventional fault diagnosis systems have constrained the automotive industry to damage vehicle maintenance and component longevity critically. Hence, there is a growing demand for advanced fault diagnosis technologies to mitigate the impact of these limitations on unplanned vehicular downtime caused by unanticipated vehicle breakdowns. Due to vehicles’ increasingly complex and autonomous nature, there is a growing urgency to investigate novel diagnosis methodologies for improving safety, reliability, and maintainability. While Artificial Intelligence (AI) has provided a great opportunity in this area, a systematic review of the feasibility and application of AI for Vehicle Fault Diagnosis (VFD)… More > Graphic Abstract

    Artificial Intelligence-Driven Vehicle Fault Diagnosis to Revolutionize Automotive Maintenance: A Review

  • Open Access

    ARTICLE

    Intelligent Diagnosis of Highway Bridge Technical Condition Based on Defect Information

    Yanxue Ma1, Xiaoling Liu1,*, Bing Wang2, Ying Liu1

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 871-889, 2024, DOI:10.32604/sdhm.2024.052683 - 20 September 2024

    Abstract In the bridge technical condition assessment standards, the evaluation of bridge conditions primarily relies on the defects identified through manual inspections, which are determined using the comprehensive hierarchical analysis method. However, the relationship between the defects and the technical condition of the bridges warrants further exploration. To address this situation, this paper proposes a machine learning-based intelligent diagnosis model for the technical condition of highway bridges. Firstly, collect the inspection records of highway bridges in a certain region of China, then standardize the severity of diverse defects in accordance with relevant specifications. Secondly, in order… More >

  • Open Access

    REVIEW

    Novel insights on oral squamous cell carcinoma management using long non-coding RNAs

    SUBHAYAN SUR1,*, DIMPLE DAVRAY2, SOUMYA BASU1, SUPRIYA KHEUR3, JAYANTA KUMAR PAL1, SHUCHI NAGAR2, AVINASH SANAP3, BHIMAPPA M. RUDAGI3, SAMIR GUPTA4

    Oncology Research, Vol.32, No.10, pp. 1589-1612, 2024, DOI:10.32604/or.2024.052120 - 18 September 2024

    Abstract Oral squamous cell carcinoma (OSCC) is one of the most prevalent forms of head and neck squamous cell carcinomas (HNSCC) with a poor overall survival rate (about 50%), particularly in cases of metastasis. RNA-based cancer biomarkers are a relatively advanced concept, and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies. This review underlines the function of long non-coding RNAs (lncRNAs) in the OSCC and its subsequent clinical implications. LncRNAs, a class of non-coding RNAs, are larger than 200 nucleotides and resemble mRNA in numerous ways. However, unlike mRNA,… More >

  • Open Access

    ARTICLE

    MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis and Prediction

    Talal H. Noor*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1273-1299, 2024, DOI:10.32604/csse.2024.052510 - 13 September 2024

    Abstract In recent years, container-based cloud virtualization solutions have emerged to mitigate the performance gap between non-virtualized and virtualized physical resources. However, there is a noticeable absence of techniques for predicting microservice performance in current research, which impacts cloud service users’ ability to determine when to provision or de-provision microservices. Predicting microservice performance poses challenges due to overheads associated with actions such as variations in processing time caused by resource contention, which potentially leads to user confusion. In this paper, we propose, develop, and validate a probabilistic architecture named Microservice Performance Diagnosis and Prediction (MPDP). MPDP… More >

  • Open Access

    ARTICLE

    Machine Fault Diagnosis Using Audio Sensors Data and Explainable AI Techniques-LIME and SHAP

    Aniqua Nusrat Zereen1, Abir Das2, Jia Uddin3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3463-3484, 2024, DOI:10.32604/cmc.2024.054886 - 12 September 2024

    Abstract Machine fault diagnostics are essential for industrial operations, and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions. Machine learning models, especially those utilizing complex algorithms like deep learning, have demonstrated major potential in extracting important information from large operational datasets. Despite their efficiency, machine learning models face challenges, making Explainable AI (XAI) crucial for improving their understandability and fine-tuning. The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study. The technique is applied to evaluate different machine-learning More >

  • Open Access

    ARTICLE

    Cost-Sensitive Dual-Stream Residual Networks for Imbalanced Classification

    Congcong Ma1,2, Jiaqi Mi1, Wanlin Gao1,2, Sha Tao1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4243-4261, 2024, DOI:10.32604/cmc.2024.054506 - 12 September 2024

    Abstract Imbalanced data classification is the task of classifying datasets where there is a significant disparity in the number of samples between different classes. This task is prevalent in practical scenarios such as industrial fault diagnosis, network intrusion detection, cancer detection, etc. In imbalanced classification tasks, the focus is typically on achieving high recognition accuracy for the minority class. However, due to the challenges presented by imbalanced multi-class datasets, such as the scarcity of samples in minority classes and complex inter-class relationships with overlapping boundaries, existing methods often do not perform well in multi-class imbalanced data… More >

  • Open Access

    ARTICLE

    GATiT: An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning

    Yu Song, Pengcheng Wu, Dongming Dai, Mingyu Gui, Kunli Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4767-4790, 2024, DOI:10.32604/cmc.2024.053506 - 12 September 2024

    Abstract The growing prevalence of knowledge reasoning using knowledge graphs (KGs) has substantially improved the accuracy and efficiency of intelligent medical diagnosis. However, current models primarily integrate electronic medical records (EMRs) and KGs into the knowledge reasoning process, ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text. To better integrate EMR text information, we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning (GATiT), which comprises text representation, subgraph construction, knowledge reasoning, and diagnostic classification. In the… More >

  • Open Access

    ARTICLE

    Refined Anam-Net: Lightweight Deep Learning Model for Improved Segmentation Performance of Optic Cup and Disc for Glaucoma Diagnosis

    Khursheed Aurangzeb*, Syed Irtaza Haider, Musaed Alhussein

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1381-1405, 2024, DOI:10.32604/cmc.2024.048987 - 18 July 2024

    Abstract In this work, we aim to introduce some modifications to the Anam-Net deep neural network (DNN) model for segmenting optic cup (OC) and optic disc (OD) in retinal fundus images to estimate the cup-to-disc ratio (CDR). The CDR is a reliable measure for the early diagnosis of Glaucoma. In this study, we developed a lightweight DNN model for OC and OD segmentation in retinal fundus images. Our DNN model is based on modifications to Anam-Net, incorporating an anamorphic depth embedding block. To reduce computational complexity, we employ a fixed filter size for all convolution layers… More >

  • Open Access

    EDITORIAL

    Key Issues for Modelling, Operation, Management and Diagnosis of Lithium Batteries: Current States and Prospects

    Bo Yang1,*, Yucun Qian1, Jianzhong Xu2, Yaxing Ren3, Yixuan Chen4

    Energy Engineering, Vol.121, No.8, pp. 2085-2091, 2024, DOI:10.32604/ee.2024.050083 - 19 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network

    Jingting Mei, Yang Yang*, Zhipeng Gao, Lanlan Rui, Yijing Lin

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4883-4904, 2024, DOI:10.32604/cmc.2024.051860 - 20 June 2024

    Abstract Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management. Considering the unique characteristics of edge networks, such as limited resources, complex network faults, and the need for high real-time performance, enhancing and optimizing existing network fault diagnosis methods is necessary. Therefore, this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network (LSNN). Firstly, we use the Izhikevich neurons model to replace the Leaky Integrate and Fire (LIF) neurons model in the LSNN model. Izhikevich… More >

Displaying 1-10 on page 1 of 356. Per Page