Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (493)
  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Blades Based on Multi-Sensor Weighted Alignment Fusion in Noisy Environments

    Lifu He1, Zhongchu Huang1, Haidong Shao2,*, Zhangbo Hu1, Yuting Wang1, Jie Mei1, Xiaofei Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073227 - 12 January 2026

    Abstract Deep learning-based wind turbine blade fault diagnosis has been widely applied due to its advantages in end-to-end feature extraction. However, several challenges remain. First, signal noise collected during blade operation masks fault features, severely impairing the fault diagnosis performance of deep learning models. Second, current blade fault diagnosis often relies on single-sensor data, resulting in limited monitoring dimensions and ability to comprehensively capture complex fault states. To address these issues, a multi-sensor fusion-based wind turbine blade fault diagnosis method is proposed. Specifically, a CNN-Transformer Coupled Feature Learning Architecture is constructed to enhance the ability to More >

  • Open Access

    REVIEW

    A Review on Fault Diagnosis Methods of Gas Turbine

    Tao Zhang1,*, Hailun Wang1, Tianyue Wang1, Tian Tian2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072696 - 12 January 2026

    Abstract The critical components of gas turbines suffer from prolonged exposure to factors such as thermal oxidation, mechanical wear, and airflow disturbances during prolonged operation. These conditions can lead to a series of issues, including mechanical faults, air path malfunctions, and combustion irregularities. Traditional model-based approaches face inherent limitations due to their inability to handle nonlinear problems, natural factors, measurement uncertainties, fault coupling, and implementation challenges. The development of artificial intelligence algorithms has provided an effective solution to these issues, sparking extensive research into data-driven fault diagnosis methodologies. The review mechanism involved searching IEEE Xplore, ScienceDirect,… More >

  • Open Access

    ARTICLE

    An IoT-Based Predictive Maintenance Framework Using a Hybrid Deep Learning Model for Smart Industrial Systems

    Atheer Aleran1, Hanan Almukhalfi1, Ayman Noor1, Reyadh Alluhaibi2, Abdulrahman Hafez3, Talal H. Noor1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070741 - 12 January 2026

    Abstract Modern industrial environments require uninterrupted machinery operation to maintain productivity standards while ensuring safety and minimizing costs. Conventional maintenance methods, such as reactive maintenance (i.e., run to failure) or time-based preventive maintenance (i.e., scheduled servicing), prove ineffective for complex systems with many Internet of Things (IoT) devices and sensors because they fall short in detecting faults at early stages when it is most crucial. This paper presents a predictive maintenance framework based on a hybrid deep learning model that integrates the capabilities of Long Short-Term Memory (LSTM) Networks and Convolutional Neural Networks (CNNs). The framework… More >

  • Open Access

    REVIEW

    Male Breast Cancer: Epidemiology, Diagnosis, Molecular Mechanisms, Therapeutics, and Future Prospective

    Ashok Kumar Sah1,*, Ranjay Kumar Choudhary1,2, Velilyaeva Alie Sabrievna3, Karomatov Inomdzhon Dzhuraevich4, Anass M. Abbas5, Manar G. Shalabi5, Nadeem Ahmad Siddique6, Raji Rubayyi Alshammari7, Navjyot Trivedi8, Rabab H. Elshaikh1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068238 - 30 December 2025

    Abstract Male breast cancer (MBC) is rare, representing 0.5%–1% of all breast cancers, but its incidence is increasing due to improved diagnostics and awareness. MBC typically presents in older men, is human epidermal growth factor receptor 2 (HER2)-negative and estrogen receptor (ER)-positive, and lacks routine screening, leading to delayed diagnosis and advanced disease. Major risk factors include hormonal imbalance, radiation exposure, obesity, alcohol use, and Breast Cancer Gene 1 and 2 (BRCA1/2) mutations. Clinically, it may resemble gynecomastia but usually appears as a unilateral, painless mass or nipple discharge. Advances in imaging and liquid biopsy have More >

  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets

    Kwok Tai Chui1,*, Varsha Arya1, Brij B. Gupta2,3,4,*, Miguel Torres-Ruiz5, Razaz Waheeb Attar6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068842 - 10 November 2025

    Abstract Parkinson’s disease (PD) is a debilitating neurological disorder affecting over 10 million people worldwide. PD classification models using voice signals as input are common in the literature. It is believed that using deep learning algorithms further enhances performance; nevertheless, it is challenging due to the nature of small-scale and imbalanced PD datasets. This paper proposed a convolutional neural network-based deep support vector machine (CNN-DSVM) to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets. A customized kernel function reduces the impact… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer

    Yingyong Zou*, Yu Zhang, Long Li, Tao Liu, Xingkui Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068246 - 10 November 2025

    Abstract Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments. However, due to the nonlinearity and non-stationarity of collected vibration signals, single-modal methods struggle to capture fault features fully. This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion. The method first employs the Hippopotamus Optimization Algorithm (HO) to optimize the number of modes in Variational Mode Decomposition (VMD) to achieve optimal modal decomposition performance. It combines Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to extract temporal features… More >

  • Open Access

    REVIEW

    Machine Intelligence for Mental Health Diagnosis: A Systematic Review of Methods, Algorithms, and Key Challenges

    Ravita Chahar, Ashutosh Kumar Dubey*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-65, 2026, DOI:10.32604/cmc.2025.066990 - 10 November 2025

    Abstract Objective: The increasing global prevalence of mental health disorders highlights the urgent need for the development of innovative diagnostic methods. Conditions such as anxiety, depression, stress, bipolar disorder (BD), and autism spectrum disorder (ASD) frequently arise from the complex interplay of demographic, biological, and socioeconomic factors, resulting in aggravated symptoms. This review investigates machine intelligence approaches for the early detection and prediction of mental health conditions. Methods: The preferred reporting items for systematic reviews and meta-analyses (PRISMA) framework was employed to conduct a systematic review and analysis covering the period 2018 to 2025. The potential… More >

  • Open Access

    REVIEW

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

    Somayah Albaradei1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2937-2970, 2025, DOI:10.32604/cmes.2025.072584 - 23 December 2025

    Abstract Cancer deaths and new cases worldwide are projected to rise by 47% by 2040, with transitioning countries experiencing an even higher increase of up to 95%. Tumor severity is profoundly influenced by the timing, accuracy, and stage of diagnosis, which directly impacts clinical decision-making. Various biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, contribute to cancer development. The emergence of multi-omics technologies has transformed cancer research by revealing molecular alterations across multiple biological layers. This integrative approach supports the notion that cancer is fundamentally driven by such alterations, enabling the discovery of molecular signatures… More > Graphic Abstract

    AI-Driven Approaches to Utilization of Multi-Omics Data for Personalized Diagnosis and Treatment of Cancer: A Comprehensive Review

  • Open Access

    REVIEW

    A Systematic Review of Multimodal Fusion and Explainable AI Applications in Breast Cancer Diagnosis

    Deema Alzamil1,2,*, Bader Alkhamees2, Mohammad Mehedi Hassan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2971-3027, 2025, DOI:10.32604/cmes.2025.070867 - 23 December 2025

    Abstract Breast cancer diagnosis relies heavily on many kinds of information from diverse sources—like mammogram images, ultrasound scans, patient records, and genetic tests—but most AI tools look at only one of these at a time, which limits their ability to produce accurate and comprehensive decisions. In recent years, multimodal learning has emerged, enabling the integration of heterogeneous data to improve performance and diagnostic accuracy. However, doctors cannot always see how or why these AI tools make their choices, which is a significant bottleneck in their reliability, along with adoption in clinical settings. Hence, people are adding… More >

Displaying 1-10 on page 1 of 493. Per Page