Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (60)
  • Open Access

    REVIEW

    Development of CaO From Natural Calcite as a Heterogeneous Base Catalyst in the Formation of Biodiesel: Review

    Nuni Widiarti1, Yatim Lailun Ni’mah1, Hasliza Bahruji2, Didik Prasetyoko1,*

    Journal of Renewable Materials, Vol.7, No.10, pp. 915-939, 2019, DOI:10.32604/jrm.2019.07183

    Abstract Biodiesel is a fossil fuel that is in demand to be developed because it is bio-renewable, biodegradable and environmentally friendly. Biodiesel produced from the transesterification reaction of vege Tab. oil using a base catalyst. CaO is the most developed catalyst for the reaction of transesterification of oil into biodiesel because it is cheap, the process is easy and has a high level of alkalinity. CaO is a cheap catalyst because it is easily obtained from natural ingredients. The use of CaO catalysts in the reaction formation of biodiesel continues to develop through modification with various More >

  • Open Access

    ARTICLE

    INVESTIGATION ON THE EFFECT OF INJECTION PRESSURES ON THE SPRAY CHARACTERISTICS FOR DIETHYL ETHER AND DIESEL FUEL AT DIFFERENT CHAMBER TEMPERATURES

    Vijayakumar Thulasi, R. Thundil Karuppa Raj*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.33

    Abstract Diethyl ether is one of the potential alternative fuels for the high speed compression ignition engines that can replace the existing neat diesel fuel. It is well known that the combustion characteristic of a compression ignition engine is highly influenced by the fuel spray structure formed during the injection process. In this paper the spray structure formation for the diethyl ether fuel is studied numerically, using the discrete phase model and it is compared with the neat diesel fuel. The spray is investigated in a constant volume chamber maintained at 30 bar pressure. The fuel… More >

  • Open Access

    ARTICLE

    Polyol Preparation by Liquefaction of Technical Lignins in Crude Glycerol

    Louis C. Muller1*, Sanette Marx1, Hermanus C.M. Vosloo2

    Journal of Renewable Materials, Vol.5, No.1, pp. 67-80, 2017, DOI:10.7569/JRM.2016.634130

    Abstract This work reports a study of polyol synthesis through liquefaction of technical lignins in crude glycerol by means of 1H and 31P NMR spectroscopy. The polyols are intended for preparation of polyurethane foam; thus, it is important to know how different lignin types as well as crude glycerol influence and contribute to the final polyol hydroxyl contents. Polyols prepared from organosolv lignin, kraft lignin and lignosulphonate had hydroxyl numbers suitable for rigid foam of 435, 515 and 529 mgKOH/g, respectively. The polyols differed in composition with glycerol, showing significant variation. During liquefaction the glycerol content More >

  • Open Access

    ARTICLE

    MODELLING AND EXPERIMENTAL VALIDATION OF COMBUSTION IN STRAIGHT INOCULATION COMPRESSION IGNITION ENGINE FUELLED WITH DIESEL AND JATROPHA METHYL ESTER BLEND

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.11

    Abstract An incorporated arithmetical model has been urbanized and investigated for CFD replication of a solitary cylinder, four stroke, straight inoculation, compressed ignition diesel engine of 3.5 kW for in-cylinder combustion analysis and authenticated under engine simulations at full load functioning conditions with foundation fuel diesel and 10% JME (volume basis) blend with diesel at invariable speed of 1500 rpm. For advancing the exactness of the exertion, a number of sub models, such as species transport model explaining the actual biodiesel energy content and molecular structure as soon as fuel blend is initiated, spray break-up model, More >

  • Open Access

    ARTICLE

    OPTIMIZATION OF COMPRESSION RATIO OF JATROPHA OIL BLEND WITH DIESEL FUELLED ON VARIABLE COMPRESSION RATIO ENGINE

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-4, 2014, DOI:10.5098/hmt.5.10

    Abstract As the world is facing crisis due to the dwindling resources of fossil fuels, rapid depletion of conventional energy is a matter of serious concern for the mankind. So there is a necessity to find alternate fuels. Vegetable oils, because of their agricultural origin, due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere is used as an alternate fuel in substitute to diesel fuel. In the present study optimum compression ratio for VCR diesel engine fuelled with Jatropha oil blends with diesel (30%) has been determined at 203 More >

  • Open Access

    ARTICLE

    CFD MODELLING AND VALIDATION OF COMBUSTION IN DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELLED WITH JATROPHA OIL BLENDS WITH DIESEL

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-6, 2014, DOI:10.5098/hmt.5.7

    Abstract This paper presents a pre-mixed combustion model for diesel and Jatropha oil blends combustion studies. Jatropha oil blends are considered as a mixture of diesel and Jatropha oil. CFD package, FLUENT 6.3 is used for modeling the complex combustion phenomenon in compression ignition engine. The experiments are carried out on a single cylinder, four strokes, water cooled direct injection compression ignition engine at compression ratio of 17.5 at full load condition at constant speed of 1500 rpm fuelled with diesel and jatropha oil blends with diesel. The numerical model is solved by considering pressure based,… More >

  • Open Access

    ARTICLE

    COMPUTATIONAL STUDIES OF SWIRL RATIO AND INJECTION TIMING ON ATOMIZATION IN A DIRECT INJECTION DIESEL ENGINE

    Renganathan Manimarana, Rajagopal Thundil Karuppa Rajb,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-9, 2014, DOI:10.5098/hmt.5.2

    Abstract Diesel engine combustion modeling presents a challenging task with the formation and breakup of spray into droplets. In this work, 3D-CFD computations are performed to understand the behaviour of spray droplet diameter and temperature during the combustion by varying the swirl ratio and injection timing. After the validation and grid and time independency tests, it is found that increase in swirl ratio from 1.4 to 4.1 results in peak pressure rise of 8 bar and an advancement of injection timing from 6 deg bTDC to 20 deg bTDC results in increase of peak pressure by More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON COMBUSTION AND EMISSION CHARACTERISTICS IN A DIRECT INJECTION DIESEL ENGINE AT ELEVATED FUEL TEMPERATURES

    Manimaran Renganathan, Thundil Karuppa Raj Rajagopal*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-11, 2013, DOI:10.5098/hmt.v4.1.3008

    Abstract In this work, fuel spray parameters are studied by varying the fuel temperature. To overcome the tedious experimental task, a 3-D Computational Fluid Dynamics methodology is adopted by injecting fuel at specified temperatures of 313 K, 353 K and 393 K. The validation is accomplished after the optimal spatial and temporal steps of discretization are found out. At a fuel temperature of 313 K, advancing the injection timing from 6 deg bTDC to 20 deg bTDC increases cylinder peak pressure from 79.8 bar to 90.9 bar. Relation between the emission characteristics and spray SMD and More >

  • Open Access

    ARTICLE

    STUDY OF INTERNAL FLOW CHARACTERISTICS OF INJECTOR FUELLED WITH VARIOUS BLENDS OF DIETHYL ETHER AND DIESEL USING CFD

    Vijayakumar Thulasi*, Thundil Karuppa Raj Rajagopal

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-5, 2013, DOI:10.5098/hmt.v4.2.3007

    Abstract Researchers across the world are exploring the potential of using diethyl ether as an alternate fuel to meet the stringent emission norms due to the high oxygen content in the fuel. The spray characteristics of any injected fuel are highly influenced by its physical properties. Due to high injection pressure in CI engines the fuel tends to cavitate inside the nozzle greatly. The change in fuel properties will affect the cavitating behavior of the fuel. In this paper computational technique is used to study and compare the internal flow characteristics of a fuel injector for More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Gas Injection Rate in Z12V190 Diesel Tail Gas Drilling

    Xuejun Hou1,2, Deli Gao1,3, Zhonghou Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.1, pp. 1-16, 2013, DOI:10.3970/cmes.2013.090.001

    Abstract Diesel tail gas drilling (DTGD) is a type of gas drilling, which uses diesel tail gas (DTG) as a circulating medium. Its cost is slightly higher than that of air drilling, but is cheaper than those of nitrogen drilling and natural gas drilling. When the reservoir is drilled with DTG, just as nitrogen and natural gas, the DTG will prevent the burning and blasting of oil and gas in the bottom hole. In order to reduce costs, the DTG is often used in drilling the reservoir, to prevent the underground explosion. This paper analyzes the… More >

Displaying 51-60 on page 6 of 60. Per Page