Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON COMBUSTION AND EMISSION CHARACTERISTICS IN A DIRECT INJECTION DIESEL ENGINE AT ELEVATED FUEL TEMPERATURES

    Manimaran Renganathan, Thundil Karuppa Raj Rajagopal*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-11, 2013, DOI:10.5098/hmt.v4.1.3008

    Abstract In this work, fuel spray parameters are studied by varying the fuel temperature. To overcome the tedious experimental task, a 3-D Computational Fluid Dynamics methodology is adopted by injecting fuel at specified temperatures of 313 K, 353 K and 393 K. The validation is accomplished after the optimal spatial and temporal steps of discretization are found out. At a fuel temperature of 313 K, advancing the injection timing from 6 deg bTDC to 20 deg bTDC increases cylinder peak pressure from 79.8 bar to 90.9 bar. Relation between the emission characteristics and spray SMD and temperature is studied. More >

  • Open Access

    ARTICLE

    STUDY OF INTERNAL FLOW CHARACTERISTICS OF INJECTOR FUELLED WITH VARIOUS BLENDS OF DIETHYL ETHER AND DIESEL USING CFD

    Vijayakumar Thulasi*, Thundil Karuppa Raj Rajagopal

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-5, 2013, DOI:10.5098/hmt.v4.2.3007

    Abstract Researchers across the world are exploring the potential of using diethyl ether as an alternate fuel to meet the stringent emission norms due to the high oxygen content in the fuel. The spray characteristics of any injected fuel are highly influenced by its physical properties. Due to high injection pressure in CI engines the fuel tends to cavitate inside the nozzle greatly. The change in fuel properties will affect the cavitating behavior of the fuel. In this paper computational technique is used to study and compare the internal flow characteristics of a fuel injector for different blends of diethyl ether… More >

  • Open Access

    ARTICLE

    OPTIMIZATION OF COMPRESSION RATIO OF JATROPHA OIL BLEND WITH DIESEL FUELLED ON VARIABLE COMPRESSION RATIO ENGINE

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-4, 2014, DOI:10.5098/hmt.5.10

    Abstract As the world is facing crisis due to the dwindling resources of fossil fuels, rapid depletion of conventional energy is a matter of serious concern for the mankind. So there is a necessity to find alternate fuels. Vegetable oils, because of their agricultural origin, due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere is used as an alternate fuel in substitute to diesel fuel. In the present study optimum compression ratio for VCR diesel engine fuelled with Jatropha oil blends with diesel (30%) has been determined at 203 bars injector opening pressure,… More >

  • Open Access

    ARTICLE

    CFD MODELLING AND VALIDATION OF COMBUSTION IN DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELLED WITH JATROPHA OIL BLENDS WITH DIESEL

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-6, 2014, DOI:10.5098/hmt.5.7

    Abstract This paper presents a pre-mixed combustion model for diesel and Jatropha oil blends combustion studies. Jatropha oil blends are considered as a mixture of diesel and Jatropha oil. CFD package, FLUENT 6.3 is used for modeling the complex combustion phenomenon in compression ignition engine. The experiments are carried out on a single cylinder, four strokes, water cooled direct injection compression ignition engine at compression ratio of 17.5 at full load condition at constant speed of 1500 rpm fuelled with diesel and jatropha oil blends with diesel. The numerical model is solved by considering pressure based, implicit and unsteady solver and… More >

  • Open Access

    ARTICLE

    COMPUTATIONAL STUDIES OF SWIRL RATIO AND INJECTION TIMING ON ATOMIZATION IN A DIRECT INJECTION DIESEL ENGINE

    Renganathan Manimarana, Rajagopal Thundil Karuppa Rajb,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-9, 2014, DOI:10.5098/hmt.5.2

    Abstract Diesel engine combustion modeling presents a challenging task with the formation and breakup of spray into droplets. In this work, 3D-CFD computations are performed to understand the behaviour of spray droplet diameter and temperature during the combustion by varying the swirl ratio and injection timing. After the validation and grid and time independency tests, it is found that increase in swirl ratio from 1.4 to 4.1 results in peak pressure rise of 8 bar and an advancement of injection timing from 6 deg bTDC to 20 deg bTDC results in increase of peak pressure by 15 %. More >

  • Open Access

    ARTICLE

    MODELLING AND EXPERIMENTAL VALIDATION OF COMBUSTION IN STRAIGHT INOCULATION COMPRESSION IGNITION ENGINE FUELLED WITH DIESEL AND JATROPHA METHYL ESTER BLEND

    Biswajit De*, Rajsekhar Panua

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.11

    Abstract An incorporated arithmetical model has been urbanized and investigated for CFD replication of a solitary cylinder, four stroke, straight inoculation, compressed ignition diesel engine of 3.5 kW for in-cylinder combustion analysis and authenticated under engine simulations at full load functioning conditions with foundation fuel diesel and 10% JME (volume basis) blend with diesel at invariable speed of 1500 rpm. For advancing the exactness of the exertion, a number of sub models, such as species transport model explaining the actual biodiesel energy content and molecular structure as soon as fuel blend is initiated, spray break-up model, wave model and pre-mixed combustion… More >

  • Open Access

    ARTICLE

    Experimental Study on Gas Flow Uniformity in a Diesel Particulate Filter Carrier

    Zhengyong Wang1, Jianhua Zhang2, Guoliang Su3, Peixing Yang4, Xiantao Fan4, Shuzhan Bai1, Ke Sun1,*, Guihua Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 193-204, 2024, DOI:10.32604/fdmp.2023.030561

    Abstract A Diesel Particulate Filter (DPF) is a critical device for diesel engine exhaust products treatment. When using active-regeneration purification methods, on the one hand, a spatially irregular gas flow can produce relatively high local temperatures, potentially resulting in damage to the carrier; On the other hand, the internal temperature field can also undergo significant changes contributing to increase this risk. This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle (DTI) condition by means of bench tests. It is shown that the considered silicon carbide carrier exhibits good flow uniformity, with a… More >

  • Open Access

    ARTICLE

    Effect of Al2O3 Nanoparticles on the Compression Ignition Performances and Emitted Pollutants of a Diesel Engine

    Noora S. Ekab1, Ahmed Q. Salam2, Ali O. Abd3, Miqdam T. Chaichan4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2847-2861, 2023, DOI:10.32604/fdmp.2023.028874

    Abstract To improve the performances of diesel engines and to reduce the pollutants they emit, aluminum oxide nanoparticles in varying quantities (50, 100, 150 ppm) have been added to conventional diesel fuel. The results of such experimental tests have revealed that the addition of nano-Al2O3 particles to the diesel fuel reduces its consumption by 0.488%, 1.02%, and 1.377%, respectively and increases the brake thermal efficiency by 1.4%, 2.6%, and 3.8%, respectively. The concentrations of undesired gases decrease accordingly by 1.5%, 1.7%, and 2.8% for HC and by 5.88%, 11.7%, and 17.6%, respectively, for CO. For the same percentages of nanoparticles, NOx… More >

  • Open Access

    ARTICLE

    Optimization of a Diesel Injector Nozzle

    Yaofei Zhang1, Guoxiang Li1, Shuzhan Bai1, Ke Sun1,*, Guihua Wang1,*, Yujie Jia2, Zhengxian Fang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2933-2951, 2023, DOI:10.32604/fdmp.2023.028804

    Abstract Multiphase simulations based on the VOF (Volume of Fluid) approach, used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model, have been conducted to study the behavior of an injector nozzle as a function of relevant structural parameters (such as the spray hole diameter and length). The related performances have been optimized in the framework of orthogonal experimental design and range analysis methods. As made evident by the results, as the spray hole diameter increases from 0.10 to 0.20 mm, the outlet mass flow rate grows by 243.23%. A small diameter of the spray hole, however, has… More >

  • Open Access

    ARTICLE

    INVESTIGATION ON THE EFFECT OF INJECTION PRESSURES ON THE SPRAY CHARACTERISTICS FOR DIETHYL ETHER AND DIESEL FUEL AT DIFFERENT CHAMBER TEMPERATURES

    Vijayakumar Thulasi, R. Thundil Karuppa Raj*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.33

    Abstract Diethyl ether is one of the potential alternative fuels for the high speed compression ignition engines that can replace the existing neat diesel fuel. It is well known that the combustion characteristic of a compression ignition engine is highly influenced by the fuel spray structure formed during the injection process. In this paper the spray structure formation for the diethyl ether fuel is studied numerically, using the discrete phase model and it is compared with the neat diesel fuel. The spray is investigated in a constant volume chamber maintained at 30 bar pressure. The fuel is injected into the chamber… More >

Displaying 1-10 on page 1 of 48. Per Page