Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Facile Preparation of a Porous Biochar Derived from Waste Crab Shell with High Removal Performance for Diesel

    Xiao Han1, Zhaodi Wu1, Yi Yang1, Jian Guo1, Yaning Wang2, Lu Cai3, Wendong Song4, Lili Ji2,*

    Journal of Renewable Materials, Vol.9, No.8, pp. 1377-1391, 2021, DOI:10.32604/jrm.2021.015076

    Abstract In this study, a porous biochar material derived from waste crab shell was prepared by one-step hydrothermal carbonization and acetic acid activation method at 180°C, which was characterized by SEM, BET, XRD and FTIR. The results show that the as-prepared crab shell biochar (CSB) exhibits a fluffy irregular layered structure with abundant pores and oxygen-containing functional groups, which can facilitate the adsorption of diesel using CSB. In addition, batch adsorption experiments had been performed, effects of initial diesel concentration, adsorption time, adsorbent dosage and pH on the diesel adsorption using CSB were analyzed, which could be observed that CSB has… More >

  • Open Access

    ARTICLE

    Study of the Combustion Process inside an Ethanol-Diesel Dual Direct Injection Engine Based on a Non-Uniform Injection Approach

    Liying Zhou1,2, Yu Liang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 159-170, 2021, DOI:10.32604/fdmp.2021.010051

    Abstract The use of ethanol is a promising method to reduce the emissions of diesel engines. The present study has been based on the installation of a gasoline electronic injection system in a single-cylinder diesel engine to control the amount of ethanol entering the cylinder during the compression (while diesel has been injected into the cylinder by the original pump injection system). The injection time has been controlled by crank angle signal collected by an AVL angle indicator. In the tests ethanol and diesel each accounted for half of the fuel volume, and the total heat energy supply of the fuel… More >

  • Open Access

    ARTICLE

    Benzyl Amino Purine and Gibberellic Acid Coupled to Nitrogen-Limited Stress Induce Fatty Acids, Biomass Accumulation, and Gene Expression in Scenedesmus Obliquus

    Hans Christian Correa-Aguado1,3, Gloria Viviana Cerrillo-Rojas1, Alejandro Rocha-Uribe2, Ruth Elena Soria-Guerra2, José Francisco Morales-Domínguez1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.2, pp. 515-531, 2021, DOI:10.32604/phyton.2021.013619

    Abstract The need for renewable energy sources makes microalgae an essential feedstock for biofuels production. The molecular aspects and the response to nitrogen (N)-limited conditions with a phytohormone stimulus in microalgae have been slightly explored. In this work, Scenedesmus obliquus was used as a study model to analyze the effect of benzyl amino purine (BAP) and gibberellic acid (GA) coupled to nitrogen limitation on cell growth, biomass and fatty acids. The selected 10-5 M BAP increased the biomass by 1.44-fold, and 10-6 M GA by 1.35-fold. The total lipids also increased by 2.8 and 1.11-fold, respectively. The 10-5 M BAP and… More >

  • Open Access

    ARTICLE

    Diffusion of a Nonvolatile Fuel Spray in Swirl Flow

    Yanju Wei1,*, Jie Zhang1, Shengcai Deng1, Yajie Zhang1, Yajing Yang2, Hao Chen3

    Energy Engineering, Vol.118, No.1, pp. 73-87, 2021, DOI:10.32604/EE.2020.012482

    Abstract The diffusion of fuel spray in swirl flow is vital for the combustion of diesel engine, however, the researches on this is still mysterious due to the obstacles on direct investigations on a real engine. The research of intake swirl in engine at present normally use CFD simulation or based on data analysis of combustion and exhaust emission, the specific mixing process of fuel in swirl flow still not very clear. In this paper, a rapid compression machine (RCM) with an optical combustion chamber was established with the mean compression velocity of 7.55 m/s. Three kinds of flow fields, including… More >

  • Open Access

    ARTICLE

    A Laboratory Investigation into the Fuel Atomization Process in a Diesel Engine for Different Configurations of the Injector Nozzles and Flow Conditions

    Mikhail G. Shatrov1, Valery I. Malchuk2, Andrey Y. Dunin1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 747-760, 2020, DOI:10.32604/fdmp.2020.08991

    Abstract This paper reports a laboratory investigation of the fuel injection process in a diesel engine. The atomization process of the considered fuel (a hydrocarbon liquid) and the ensuing mixing with air is studied experimentally under high-pressure conditions. Different types of injector nozzles are examined, including (two) new configurations, which are compared in terms of performances to a standard injector manufactured by the Bosch company. For the two alternate con- figurations, the intake edges of one atomizing hole (hole No. 1) are located in the sack volume while for the other (hole No. 2) they are located on the locking cone… More >

  • Open Access

    ARTICLE

    Influence of Diesel Engine Intake Throttle and Late Post Injection Process on the Rise of Temperature in the Diesel Oxidation Catalyst

    Ke Sun, Da Li, Hao Liu, Shuzhan Bai*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 573-584, 2020, DOI:10.32604/fdmp.2020.09591

    Abstract In order to effectively implement DPF (Diesel Particulate Filters) regeneration control, thermal management of exhaust products before and inside Diesel Oxidation Catalyst (DOC) is necessary. In the present study, the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests. The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC; in particular, with intake throttle valve opening at 20%, temperature before DOC can be increased by about 170°C with respect to the full opening. An increase in the late… More >

  • Open Access

    REVIEW

    Development of CaO From Natural Calcite as a Heterogeneous Base Catalyst in the Formation of Biodiesel: Review

    Nuni Widiarti1, Yatim Lailun Ni’mah1, Hasliza Bahruji2, Didik Prasetyoko1,*

    Journal of Renewable Materials, Vol.7, No.10, pp. 915-939, 2019, DOI:10.32604/jrm.2019.07183

    Abstract Biodiesel is a fossil fuel that is in demand to be developed because it is bio-renewable, biodegradable and environmentally friendly. Biodiesel produced from the transesterification reaction of vege Tab. oil using a base catalyst. CaO is the most developed catalyst for the reaction of transesterification of oil into biodiesel because it is cheap, the process is easy and has a high level of alkalinity. CaO is a cheap catalyst because it is easily obtained from natural ingredients. The use of CaO catalysts in the reaction formation of biodiesel continues to develop through modification with various porous materials and different oxide… More >

  • Open Access

    ARTICLE

    Polyol Preparation by Liquefaction of Technical Lignins in Crude Glycerol

    Louis C. Muller1*, Sanette Marx1, Hermanus C.M. Vosloo2

    Journal of Renewable Materials, Vol.5, No.1, pp. 67-80, 2017, DOI:10.7569/JRM.2016.634130

    Abstract This work reports a study of polyol synthesis through liquefaction of technical lignins in crude glycerol by means of 1H and 31P NMR spectroscopy. The polyols are intended for preparation of polyurethane foam; thus, it is important to know how different lignin types as well as crude glycerol influence and contribute to the final polyol hydroxyl contents. Polyols prepared from organosolv lignin, kraft lignin and lignosulphonate had hydroxyl numbers suitable for rigid foam of 435, 515 and 529 mgKOH/g, respectively. The polyols differed in composition with glycerol, showing significant variation. During liquefaction the glycerol content was mostly reduced through bonding… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Gas Injection Rate in Z12V190 Diesel Tail Gas Drilling

    Xuejun Hou1,2, Deli Gao1,3, Zhonghou Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.1, pp. 1-16, 2013, DOI:10.3970/cmes.2013.090.001

    Abstract Diesel tail gas drilling (DTGD) is a type of gas drilling, which uses diesel tail gas (DTG) as a circulating medium. Its cost is slightly higher than that of air drilling, but is cheaper than those of nitrogen drilling and natural gas drilling. When the reservoir is drilled with DTG, just as nitrogen and natural gas, the DTG will prevent the burning and blasting of oil and gas in the bottom hole. In order to reduce costs, the DTG is often used in drilling the reservoir, to prevent the underground explosion. This paper analyzes the composition of the Z12V190 diesel… More >

Displaying 41-50 on page 5 of 49. Per Page