Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (125)
  • Open Access

    ARTICLE

    On the Convergence of Random Differential Quadrature (RDQ) Method and Its Application in Solving Nonlinear Differential Equations in Mechanics

    Hua Li1, Shantanu S. Mulay1, Simon See2

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 43-82, 2009, DOI:10.3970/cmes.2009.048.043

    Abstract Differential Quadrature (DQ) is one of the efficient derivative approximation techniques but it requires a regular domain with all the points distributed only along straight lines. This severely restricts the DQ while solving the irregular domain problems discretized by the random field nodes. This limitation of the DQ method is overcome in a proposed novel strong-form meshless method, called the random differential quadrature (RDQ) method. The RDQ method extends the applicability of the DQ technique over the irregular or regular domains discretized using the random field nodes by approximating a function value with the fixed… More >

  • Open Access

    ARTICLE

    The Fourth-Order Group Preserving Methods for the Integrations of Ordinary Differential Equations

    Hung-Chang Lee1, Chein-Shan Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.1, pp. 1-26, 2009, DOI:10.3970/cmes.2009.041.001

    Abstract The group-preserving schemes developed by Liu (2001) for integrating ordinary differential equations system were adopted the Cayley transform and Padé approximants to formulate the Lie group from its Lie algebra. However, the accuracy of those schemes is not better than second-order. In order to increase the accuracy by employing the group-preserving schemes on ordinary differential equations, according to an efficient technique developed by Runge and Kutta to raise the order of accuracy from the Euler method, we combine the Runge-Kutta method on the group-preserving schemes to obtain the higher-order numerical methods of group-preserving type. They More >

  • Open Access

    ARTICLE

    Stability Analysis for Fractional Differential Equations and Their Applications in the Models of HIV-1 Infection

    Chunhai Kou1, Ye Yan2, Jian Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.3, pp. 301-318, 2009, DOI:10.3970/cmes.2009.039.301

    Abstract In the paper, stability for fractional order differential equations is studied. Then the result obtained is applied to analyse the stability of equilibrium for the model of HIV. More >

  • Open Access

    ARTICLE

    On the Application of Wavelets to One Dimensional Flame Simulations with Non-Unit Lewis Numbers

    R. Prosser1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 411-424, 2009, DOI:10.3970/fdmp.2009.005.411

    Abstract A novel wavelet-based method for the simulation of reacting flows on adaptive meshes is presented. The method is based on a subtraction algorithm, wherein the wavelet coefficients are calculated from the low resolution up (as opposed to the standard top-down approach). The advantage of this new method is that it allows the calculation of wavelet coefficients on sparse grids, and thus lends itself more readily to adaptive computational meshes than does the traditional wavelet algorithm. The approach is used to simulate a one-dimensional laminar pre-mixed flame with different Lewis numbers. The computational grid is adapted More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for Solving Delay Ordinary Differential Equations

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 97-116, 2009, DOI:10.3970/cmc.2009.010.097

    Abstract A new numerical method is proposed for solving the delay ordinary differential equations (DODEs) under multiple time-varying delays or state-dependent delays. The finite difference scheme is used to approximate the ODEs, which together with the initial conditions constitute a system of nonlinear algebraic equations (NAEs). Then, a Fictitious Time Integration Method (FTIM) is used to solve these NAEs. Numerical examples confirm that the present approach is highly accurate and efficient with a fast convergence. More >

  • Open Access

    ARTICLE

    A Numerical Solution of 2D Buckley-Leverett Equation via Gradient Reproducing Kernel Particle Method

    Hossein M. Shodja1,2,3, Alireza Hashemian1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.1, pp. 17-34, 2008, DOI:10.3970/cmes.2008.032.017

    Abstract Gradient reproducing kernel particle method (GRKPM) is a meshless technique which incorporates the first gradients of the function into the reproducing equation of RKPM. Therefore, in two-dimensional space GRKPM introduces three types of shape functions rather than one. The robustness of GRKPM's shape functions is established by reconstruction of a third-order polynomial. To enforce the essential boundary conditions (EBCs), GRKPM's shape functions are modified by transformation technique. By utilizing the modified shape functions, the weak form of the nonlinear evolutionary Buckley-Leverett (BL) equation is discretized in space, rendering a system of nonlinear ordinary differential equations More >

  • Open Access

    ARTICLE

    A Novel Time Integration Method for Solving A Large System of Non-Linear Algebraic Equations

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.31, No.2, pp. 71-84, 2008, DOI:10.3970/cmes.2008.031.071

    Abstract Iterative algorithms for solving a nonlinear system of algebraic equations of the type: Fi(xj) = 0, i,j = 1,…,n date back to the seminal work of Issac Newton. Nowadays a Newton-like algorithm is still the most popular one due to its easy numerical implementation. However, this type of algorithm is sensitive to the initial guess of the solution and is expensive in the computations of the Jacobian matrix ∂ Fi/ ∂ xj and its inverse at each iterative step. In a time-integration of a system of nonlinear Ordinary Differential Equations (ODEs) of the type Bijxj + Fi = 0… More >

  • Open Access

    ARTICLE

    Stable PDE Solution Methods for Large Multiquadric Shape Parameters

    Arezoo Emdadi1, Edward J. Kansa2, Nicolas Ali Libre1,3, Mohammad Rahimian1, Mohammad Shekarchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.1, pp. 23-42, 2008, DOI:10.3970/cmes.2008.025.023

    Abstract We present a new method based upon the paper of Volokh and Vilney (2000) that produces highly accurate and stable solutions to very ill-conditioned multiquadric (MQ) radial basis function (RBF) asymmetric collocation methods for partial differential equations (PDEs). We demonstrate that the modified Volokh-Vilney algorithm that we name the improved truncated singular value decomposition (IT-SVD) produces highly accurate and stable numerical solutions for large values of a constant MQ shape parameter, c, that exceeds the critical value of c based upon Gaussian elimination. More >

  • Open Access

    ARTICLE

    The Stochastic α Method: A Numerical Method for Simulation of Noisy Second Order Dynamical Systems

    Nagalinga Rajan, Soumyendu Raha1

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 91-116, 2008, DOI:10.3970/cmes.2008.023.091

    Abstract The article describes a numerical method for time domain integration of noisy dynamical systems originating from engineering applications. The models are second order stochastic differential equations (SDE). The stochastic process forcing the dynamics is treated mainly as multiplicative noise involving a Wiener Process in the Itô sense. The developed numerical integration method is a drift implicit strong order 2.0 method. The method has user-selectable numerical dissipation properties that can be useful in dealing with both multiplicative noise and stiffness in a computationally efficient way. A generalized analysis of the method including the multiplicative noise is More >

  • Open Access

    ABSTRACT

    Solving Partial Differential Equations With Point Collocation And One-Dimensional Integrated Interpolation Schemes

    N. Mai-Duy1, T. Tran-Cong1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.3, pp. 127-132, 2007, DOI:10.3970/icces.2007.003.127

    Abstract This lecture presents an overview of the Integral Collocation formulation for numerically solving partial differential equations (PDEs). However, due to space limitation, the paper only describes the latest development, namely schemes based only on one-dimensional (1D) integrated interpolation even in multi-dimensional problems. The proposed technique is examined with Chebyshev polynomials and radial basis functions (RBFs). The latter can be used in both regular and irregular domains. For both basis functions, the accuracy and convergence rates of the new technique are better than those of the differential formulation. More >

Displaying 111-120 on page 12 of 125. Per Page