Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Stable PDE Solution Methods for Large Multiquadric Shape Parameters

    Arezoo Emdadi1, Edward J. Kansa2, Nicolas Ali Libre1,3, Mohammad Rahimian1, Mohammad Shekarchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.1, pp. 23-42, 2008, DOI:10.3970/cmes.2008.025.023

    Abstract We present a new method based upon the paper of Volokh and Vilney (2000) that produces highly accurate and stable solutions to very ill-conditioned multiquadric (MQ) radial basis function (RBF) asymmetric collocation methods for partial differential equations (PDEs). We demonstrate that the modified Volokh-Vilney algorithm that we name the improved truncated singular value decomposition (IT-SVD) produces highly accurate and stable numerical solutions for large values of a constant MQ shape parameter, c, that exceeds the critical value of c based upon Gaussian elimination. More >

  • Open Access

    ARTICLE

    The Stochastic α Method: A Numerical Method for Simulation of Noisy Second Order Dynamical Systems

    Nagalinga Rajan, Soumyendu Raha1

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.2, pp. 91-116, 2008, DOI:10.3970/cmes.2008.023.091

    Abstract The article describes a numerical method for time domain integration of noisy dynamical systems originating from engineering applications. The models are second order stochastic differential equations (SDE). The stochastic process forcing the dynamics is treated mainly as multiplicative noise involving a Wiener Process in the Itô sense. The developed numerical integration method is a drift implicit strong order 2.0 method. The method has user-selectable numerical dissipation properties that can be useful in dealing with both multiplicative noise and stiffness in a computationally efficient way. A generalized analysis of the method including the multiplicative noise is More >

  • Open Access

    ABSTRACT

    Solving Partial Differential Equations With Point Collocation And One-Dimensional Integrated Interpolation Schemes

    N. Mai-Duy1, T. Tran-Cong1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.3, pp. 127-132, 2007, DOI:10.3970/icces.2007.003.127

    Abstract This lecture presents an overview of the Integral Collocation formulation for numerically solving partial differential equations (PDEs). However, due to space limitation, the paper only describes the latest development, namely schemes based only on one-dimensional (1D) integrated interpolation even in multi-dimensional problems. The proposed technique is examined with Chebyshev polynomials and radial basis functions (RBFs). The latter can be used in both regular and irregular domains. For both basis functions, the accuracy and convergence rates of the new technique are better than those of the differential formulation. More >

  • Open Access

    ARTICLE

    Efficient Shooting Methods for the Second-Order Ordinary Differential Equations

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.2, pp. 69-86, 2006, DOI:10.3970/cmes.2006.015.069

    Abstract In this paper we will study the numerical integrations of second order boundary value problems under the imposed conditions at t=0 and t=T in a general setting. We can construct a compact space shooting method for finding the unknown initial conditions. The key point is based on the construction of a one-step Lie group element G(u0,uT) and the establishment of a mid-point Lie group element G(r). Then, by imposing G(u0,uT) = G(r) we can search the missing initial conditions through an iterative solution of the weighting factor r ∈ (0,1). Numerical examples were examined to convince that the new More >

  • Open Access

    ARTICLE

    Preserving Constraints of Differential Equations by Numerical Methods Based on Integrating Factors

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.2, pp. 83-108, 2006, DOI:10.3970/cmes.2006.012.083

    Abstract The system we consider consists of two parts: a purely algebraic system describing the manifold of constraints and a differential part describing the dynamics on this manifold. For the constrained dynamical problem in its engineering application, it is utmost important to developing numerical methods that can preserve the constraints. We embed the nonlinear dynamical system with dimensions n and with k constraints into a mathematically equivalent n + k-dimensional nonlinear system, which including k integrating factors. Each subsystem of the k independent sets constitutes a Lie type system of X˙i = AiXi with Aiso(ni,1) and n1 +···+nk = n.… More >

  • Open Access

    ARTICLE

    Nonstandard Group-Preserving Schemes for Very Stiff Ordinary Differential Equations

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.3, pp. 255-272, 2005, DOI:10.3970/cmes.2005.009.255

    Abstract The group-preserving scheme developed by Liu (2001) for calculating the solutions of k-dimensional differential equations system adopted the Cayley transform to formulate the Lie group from its Lie algebra A ∈ so(k,1). In this paper we consider a more effective exponential mapping to derive exp(hA). In order to overcome the difficulty of numerical instabilities encountered by employing group-preserving schemes on stiff differential equations, we further combine the nonstandard finite difference method into the group-preserving schemes to obtain unconditional stable numerical methods. They provide single-step explicit time integrators for stiff differential equations. Several numerical examples are examined, some More >

  • Open Access

    REVIEW

    Trefftz Methods for Time Dependent Partial Differential Equations

    Hokwon A. Cho1, M. A. Golberg2, A. S. Muleshkov1, Xin Li1

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 1-38, 2004, DOI:10.3970/cmc.2004.001.001

    Abstract In this paper we present a mesh-free approach to numerically solving a class of second order time dependent partial differential equations which include equations of parabolic, hyperbolic and parabolic-hyperbolic types. For numerical purposes, a variety of transformations is used to convert these equations to standard reaction-diffusion and wave equation forms. To solve initial boundary value problems for these equations, the time dependence is removed by either the Laplace or the Laguerre transform or time differencing, which converts the problem into one of solving a sequence of boundary value problems for inhomogeneous modified Helmholtz equations. These… More >

  • Open Access

    ARTICLE

    Indirect RBFN Method with Thin Plate Splines for Numerical Solution of Differential Equations

    N. Mai-Duy, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 85-102, 2003, DOI:10.3970/cmes.2003.004.085

    Abstract This paper reports a mesh-free Indirect Radial Basis Function Network method (IRBFN) using Thin Plate Splines (TPSs) for numerical solution of Differential Equations (DEs) in rectangular and curvilinear coordinates. The adjustable parameters required by the method are the number of centres, their positions and possibly the order of the TPS. The first and second order TPSs which are widely applied in numerical schemes for numerical solution of DEs are employed in this study. The advantage of the TPS over the multiquadric basis function is that the former, with a given order, does not contain the… More >

Displaying 91-100 on page 10 of 98. Per Page