Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (454)
  • Open Access

    ARTICLE

    FRF-BiLSTM: Recognising and Mitigating DDoS Attacks through a Secure Decentralized Feature Optimized Federated Learning Approach

    Sushruta Mishra1, Sunil Kumar Mohapatra2, Kshira Sagar Sahoo3, Anand Nayyar4, Tae-Kyung Kim5,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072493 - 12 January 2026

    Abstract With an increase in internet-connected devices and a dependency on online services, the threat of Distributed Denial of Service (DDoS) attacks has become a significant concern in cybersecurity. The proposed system follows a multi-step process, beginning with the collection of datasets from different edge devices and network nodes. To verify its effectiveness, experiments were conducted using the CICDoS2017, NSL-KDD, and CICIDS benchmark datasets alongside other existing models. Recursive feature elimination (RFE) with random forest is used to select features from the CICDDoS2019 dataset, on which a BiLSTM model is trained on local nodes. Local models… More >

  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026

    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open Access

    ARTICLE

    Numerical Simulation of Damage Behavior in Graphene-Reinforced Aluminum Matrix Composite Armatures under Multi-Physical Field Coupling

    Junwen Huo, Haicheng Liang, Weiye Dong, Xiaoming Du*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.073285 - 09 December 2025

    Abstract With the rapid advancement of electromagnetic launch technology, enhancing the structural stability and thermal resistance of armatures has become essential for improving the overall efficiency and reliability of railgun systems. Traditional aluminum alloy armatures often suffer from severe ablation, deformation, and uneven current distribution under high pulsed currents, which limit their performance and service life. To address these challenges, this study employs the Johnson–Cook constitutive model and the finite element method to develop armature models of aluminum matrix composites with varying heterogeneous graphene volume fractions. The temperature, stress, and strain of the armatures during operation… More >

  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025

    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model

    Adel Saad Assiri1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069826 - 10 November 2025

    Abstract Customer churn is the rate at which customers discontinue doing business with a company over a given time period. It is an essential measure for businesses to monitor high churn rates, as they often indicate underlying issues with services, products, or customer experience, resulting in considerable income loss. Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth. Traditional machine learning (ML) models often struggle to capture complex temporal dependencies in client behavior data. To address this, an optimized deep learning (DL) approach using a Regularized Bidirectional Long Short-Term… More >

  • Open Access

    ARTICLE

    IOTA-Based Authentication for IoT Devices in Satellite Networks

    D. Bernal*, O. Ledesma, P. Lamo, J. Bermejo

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-39, 2026, DOI:10.32604/cmc.2025.069746 - 10 November 2025

    Abstract This work evaluates an architecture for decentralized authentication of Internet of Things (IoT) devices in Low Earth Orbit (LEO) satellite networks using IOTA Identity technology. To the best of our knowledge, it is the first proposal to integrate IOTA’s Directed Acyclic Graph (DAG)-based identity framework into satellite IoT environments, enabling lightweight and distributed authentication under intermittent connectivity. The system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) over the Tangle, eliminating the need for mining and sequential blocks. An identity management workflow is implemented that supports the creation, validation, deactivation, and reactivation of IoT devices,… More >

  • Open Access

    EDITORIAL

    Current practices and future directions in prostate biopsy techniques: insights from a meta-analysis and european multicenter survey

    Xingkang Jiang*, Jing Tian, Yong Xu

    Canadian Journal of Urology, Vol.32, No.6, pp. 539-540, 2025, DOI:10.32604/cju.2025.073363 - 30 December 2025

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Influence of Ag content on direct current conductivity of Agx(As2(Te0.5Se0.5)3)100-x system

    G. R. Štrbaca,*, O. Bošákb, D. Štrbacc, R. Vigia, M. Kublihab, S. Minárikb

    Chalcogenide Letters, Vol.22, No.5, pp. 481-491, 2025, DOI:10.15251/CL.2025.225.481

    Abstract The temperature dependence of direct current (DC) conductivity, silver content, and the presence of crystalline phases in amorphous and annealed chalcogenides from the Agx(As2(Te0.5Se0.5)3)100-x system was investigated. Amorphous samples exhibited semiconducting behavior, with conductivity increase as the silver content raised. This increase was primarily attributed to electron transitions into delocalized states from states localized near the Fermi level. Percolation behavior in conductivity was observed in the samples containing 7 at.% or more silver. For annealed samples with silver content below 9 at.%, temperature-independent DC conductivity was identified, accompanied by a decrease in conductivity as the silver More >

  • Open Access

    ARTICLE

    Numerical Investigation of Wind Resistance in Inland River Low-Emission Ships

    Guang Chen1, Shiwang Dang1, Fanpeng Kong2, Lingchong Hu1, Zhiming Zhang1, Yi Guo3, Xue Pei1, Jichao Li1,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2721-2740, 2025, DOI:10.32604/fdmp.2025.068889 - 01 December 2025

    Abstract To enhance the navigation efficiency of inland new-energy ships and reduce energy consumption and emissions, this study investigates wind load coefficients under 13 conditions, combining a wind speed of 2.0 m/s with wind direction angles ranging from 0° to 180° in 15° increments. Using Computational Fluid Dynamics (CFD) simulations, the wind load is decomposed into along-course (CX) and transverse (CY) components, and their variation with wind direction is systematically analyzed. Results show that CX is maximal under headwind (0°), decreases approximately following a cosine trend, and reaches its most negative value under tailwind (180°). CY peaks at More >

Displaying 1-10 on page 1 of 454. Per Page