Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    A Study on the Physical Properties of Banana Straw Based on the Discrete Element Method

    Sen Zhang1, Jie Jiang2,3,*, Yuedong Wang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1159-1172, 2023, DOI:10.32604/fdmp.2022.024070

    Abstract To improve the application of discrete element models (DEM) to the design of agricultural crushers, in this study a new highly accurate model is elaborated. The model takes into account the fiber structure, porous nature of the material and the leaf sheath coating structure. Dedicated experimental tests are conducted to determine the required “intrinsic” and basic contact parameters of the considered banana straw materials. A large number of bonding parameters are examined in relation to the particle aggregation model in order to characterize different actual banana straws. Using the particle surface energy contact model, the viscosity characteristics of the crushed… More > Graphic Abstract

    A Study on the Physical Properties of Banana Straw Based on the Discrete Element Method

  • Open Access

    ARTICLE

    Friction Coefficient Calibration of Sunflower Seeds for Discrete Element Modeling Simulation

    Shuai Wang, Zhihong Yu*, Wenjie Zhang, Dongxu Zhao, Aorigele

    Phyton-International Journal of Experimental Botany, Vol.91, No.11, pp. 2559-2582, 2022, DOI:10.32604/phyton.2022.021354

    Abstract

    Sunflower (Helianthus annuus L.) is one of the four major oil crops in the world and has high economic value. However, the lack of discrete element method (DEM) models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting. The present study was conducted on two varieties of sunflower, and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds. Similarly, the physical characteristics parameters of sunflower… More >

  • Open Access

    ARTICLE

    Deep Learning Predicts Stress–Strain Relations of Granular Materials Based on Triaxial Testing Data

    Tongming Qu1, Shaocheng Di2, Y. T. Feng1,3,*, Min Wang4, Tingting Zhao3, Mengqi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 129-144, 2021, DOI:10.32604/cmes.2021.016172

    Abstract This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns from triaxial testing data by combining discrete element modelling (DEM) and deep learning. A constitutive learning strategy is proposed based on the generally accepted frame-indifference assumption in constructing material constitutive models. The low-dimensional principal stress-strain sequence pairs, measured from discrete element modelling of triaxial testing, are used to train recurrent neural networks, and then the predicted principal stress sequence is augmented to other high-dimensional or general stress tensor via coordinate transformation. Through detailed hyperparameter investigations, it is found that long short-term memory (LSTM) and gated recurrent… More >

  • Open Access

    ARTICLE

    Discrete Element Modelling of Dynamic Behaviour of Rockfills for Resisting High Speed Projectile Penetration

    Tingting Zhao1, Y. T. Feng2,*, Jie Zhang1, Zhihua Wang1, Zhiyong Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 721-735, 2021, DOI:10.32604/cmes.2021.015913

    Abstract This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour of rockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by the Minkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowski overlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternion based orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures a robust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviour of a… More >

  • Open Access

    ARTICLE

    Effect of Hole Density and Confining Pressure on Mechanical Behavior of Porous Specimens: An Insight from Discrete Element Modeling

    Yuanchao Zhang1, Zhiyuan Xia2,*, Yujing Jiang1, Miao Chen3, Jiankang Liu1, Qian Yin4

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 259-280, 2020, DOI:10.32604/cmes.2020.011076

    Abstract Hole-like defects are very common in natural rock or coal mass, and play an important role in the failure and mechanical behaviors of rock or coal mass. In this research, multi-holed coal specimens are constructed numerically and calibrated based on UDEC-GBM models. Then, the strength, deformation and failure behavior of the porous specimens are analyzed, with consideration of hole density (P) and confining pressure (σ3). The simulation results are highly consistent with those available experiment results, and show that the compressive strength decreases exponentially with the increasing hole density. The strength loss is mainly caused by the reduction of cohesion… More >

  • Open Access

    ARTICLE

    Identification of the Discrete Element Model Parameters for Rock-Like Brittle Materials

    Rui Chen1, 2, Yong Wang1, 2, Ruitao Peng1, 2, *, Shengqiang Jiang1, 2, Congfang Hu1, 2, Ziheng Zhao1, 2

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 717-737, 2020, DOI:10.32604/cmes.2020.07438

    Abstract An inverse method for parameters identification of discrete element model combined with experiment is proposed. The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses. In this method, the discrete element method is employed as numerical calculator for the forward problem. Then, the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis. In addition, to improve the computational efficiency, the approximate model technique is used to replace the actual computational model. The intergeneration projection genetic algorithm (IP-GA) is employed as the… More >

Displaying 1-10 on page 1 of 6. Per Page