Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    Explainable Transformer-Based Approach for Dental Disease Prediction

    Sari Masri, Ahmad Hasasneh*

    Computer Systems Science and Engineering, Vol.49, pp. 481-497, 2025, DOI:10.32604/csse.2025.068616 - 10 October 2025

    Abstract Diagnosing dental disorders using routine photographs can significantly reduce chair-side workload and expand access to care. However, most AI-based image analysis systems suffer from limited interpretability and are trained on class-imbalanced datasets. In this study, we developed a balanced, transformer-based pipeline to detect three common dental disorders: tooth discoloration, calculus, and hypodontia, from standard color images. After applying a color-standardized preprocessing pipeline and performing stratified data splitting, the proposed vision transformer model was fine-tuned and subsequently evaluated using standard classification benchmarks. The model achieved an impressive accuracy of 98.94%, with precision, recall and F1 scores More >

  • Open Access

    ARTICLE

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

    Soumia Zertal1,2,*, Asma Saighi1,2, Sofia Kouah1,2, Souham Meshoul3,*, Zakaria Laboudi2,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3737-3782, 2025, DOI:10.32604/cmes.2025.068558 - 30 September 2025

    Abstract Cardiovascular diseases (CVDs) continue to present a leading cause of mortality worldwide, emphasizing the importance of early and accurate prediction. Electrocardiogram (ECG) signals, central to cardiac monitoring, have increasingly been integrated with Deep Learning (DL) for real-time prediction of CVDs. However, DL models are prone to performance degradation due to concept drift and to catastrophic forgetting. To address this issue, we propose a real-time CVDs prediction approach, referred to as ADWIN-GFR that combines Convolutional Neural Network (CNN) layers, for spatial feature extraction, with Gated Recurrent Units (GRU), for temporal modeling, alongside adaptive drift detection and… More > Graphic Abstract

    A Real-Time Deep Learning Approach for Electrocardiogram-Based Cardiovascular Disease Prediction with Adaptive Drift Detection and Generative Feature Replay

  • Open Access

    ARTICLE

    Optimized Cardiovascular Disease Prediction Using Clustered Butterfly Algorithm

    Kamepalli S. L. Prasanna1, Vijaya J2, Parvathaneni Naga Srinivasu1, Babar Shah3, Farman Ali4,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1603-1630, 2025, DOI:10.32604/cmc.2025.068707 - 29 August 2025

    Abstract Cardiovascular disease prediction is a significant area of research in healthcare management systems (HMS). We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance. The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data. We present Clustered Butterfly Optimization Techniques (RoughK-means+BOA) as a new hybrid method for predicting heart disease. This method comprises two phases: clustering data using Roughk-means (RKM) and data analysis using the butterfly optimization algorithm (BOA). The benchmark dataset from the UCI More >

  • Open Access

    ARTICLE

    A Federated Learning Approach for Cardiovascular Health Analysis and Detection

    Farhan Sarwar1, Muhammad Shoaib Farooq1, Nagwan Abdel Samee2,*, Mona M. Jamjoom3, Imran Ashraf4,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5897-5914, 2025, DOI:10.32604/cmc.2025.063832 - 30 July 2025

    Abstract Environmental transition can potentially influence cardiovascular health. Investigating the relationship between such transition and heart disease has important applications. This study uses federated learning (FL) in this context and investigates the link between climate change and heart disease. The dataset containing environmental, meteorological, and health-related factors like blood sugar, cholesterol, maximum heart rate, fasting ECG, etc., is used with machine learning models to identify hidden patterns and relationships. Algorithms such as federated learning, XGBoost, random forest, support vector classifier, extra tree classifier, k-nearest neighbor, and logistic regression are used. A framework for diagnosing heart disease More >

  • Open Access

    ARTICLE

    Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight

    Iman S. Al-Mahdi1, Saad M. Darwish1,*, Magda M. Madbouly2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 875-909, 2025, DOI:10.32604/cmes.2025.061623 - 11 April 2025

    Abstract Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and high computational cost. This work proposes a novel classification model for heart… More >

  • Open Access

    ARTICLE

    Improving Multiple Sclerosis Disease Prediction Using Hybrid Deep Learning Model

    Stephen Ojo1, Moez Krichen2,3,*, Meznah A. Alamro4, Alaeddine Mihoub5, Gabriel Avelino Sampedro6, Jaroslava Kniezova7,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 643-661, 2024, DOI:10.32604/cmc.2024.052147 - 15 October 2024

    Abstract Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis (MS), a chronic autoimmune neurological condition. It disrupts signals between the brain and body, causing symptoms including tiredness, muscle weakness, and difficulty with memory and balance. Traditional methods for detecting MS are less precise and time-consuming, which is a major gap in addressing this problem. This gap has motivated the investigation of new methods to improve MS detection consistency and accuracy. This paper proposed a novel approach named FAD consisting of Deep Neural Network… More >

  • Open Access

    ARTICLE

    A Study on Outlier Detection and Feature Engineering Strategies in Machine Learning for Heart Disease Prediction

    Varada Rajkumar Kukkala1, Surapaneni Phani Praveen2, Naga Satya Koti Mani Kumar Tirumanadham3, Parvathaneni Naga Srinivasu4,5,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1085-1112, 2024, DOI:10.32604/csse.2024.053603 - 13 September 2024

    Abstract This paper investigates the application of machine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely; Z-Score incorporated with Grey Wolf Optimization (GWO) as well as Interquartile Range (IQR) coupled with Ant Colony Optimization (ACO). Using a performance index, it is shown that when compared with the Z-Score and GWO with AdaBoost, the IQR and ACO, with AdaBoost are not very accurate (89.0% vs. 86.0%) and less discriminative (Area Under the Curve (AUC) score of 93.0% vs. 91.0%). The Z-Score and GWO… More >

  • Open Access

    ARTICLE

    Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization

    Tajim Md. Niamat Ullah Akhund1,2,*, Waleed M. Al-Nuwaiser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3485-3506, 2024, DOI:10.32604/cmc.2024.054222 - 12 September 2024

    Abstract This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST (Internet of Sensing Things) device. Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning. Significant improvements were observed across various models, with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score, recall, and precision. The study underscores the critical role of tailored hyperparameter tuning in optimizing these models, revealing diverse outcomes among algorithms. Decision Trees and Random Forests exhibited stable performance throughout the evaluation. While More >

  • Open Access

    ARTICLE

    Cardiovascular Disease Prediction Using Risk Factors: A Comparative Performance Analysis of Machine Learning Models

    Adil Hussain1,*, Ayesha Aslam2

    Journal on Artificial Intelligence, Vol.6, pp. 129-152, 2024, DOI:10.32604/jai.2024.050277 - 21 May 2024

    Abstract The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly. The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data. Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses. This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors. This study utilizes a variety of machine learning models, More >

Displaying 1-10 on page 1 of 39. Per Page