Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    A Study on Outlier Detection and Feature Engineering Strategies in Machine Learning for Heart Disease Prediction

    Varada Rajkumar Kukkala1, Surapaneni Phani Praveen2, Naga Satya Koti Mani Kumar Tirumanadham3, Parvathaneni Naga Srinivasu4,5,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1085-1112, 2024, DOI:10.32604/csse.2024.053603

    Abstract This paper investigates the application of machine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely; Z-Score incorporated with Grey Wolf Optimization (GWO) as well as Interquartile Range (IQR) coupled with Ant Colony Optimization (ACO). Using a performance index, it is shown that when compared with the Z-Score and GWO with AdaBoost, the IQR and ACO, with AdaBoost are not very accurate (89.0% vs. 86.0%) and less discriminative (Area Under the Curve (AUC) score of 93.0% vs. 91.0%). The Z-Score and GWO… More >

  • Open Access

    ARTICLE

    Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization

    Tajim Md. Niamat Ullah Akhund1,2,*, Waleed M. Al-Nuwaiser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3485-3506, 2024, DOI:10.32604/cmc.2024.054222

    Abstract This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST (Internet of Sensing Things) device. Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning. Significant improvements were observed across various models, with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score, recall, and precision. The study underscores the critical role of tailored hyperparameter tuning in optimizing these models, revealing diverse outcomes among algorithms. Decision Trees and Random Forests exhibited stable performance throughout the evaluation. While More >

  • Open Access

    ARTICLE

    Cardiovascular Disease Prediction Using Risk Factors: A Comparative Performance Analysis of Machine Learning Models

    Adil Hussain1,*, Ayesha Aslam2

    Journal on Artificial Intelligence, Vol.6, pp. 129-152, 2024, DOI:10.32604/jai.2024.050277

    Abstract The diagnosis and prognosis of cardiovascular diseases are critical medical responsibilities that assist cardiologists in correctly classifying patients and treating them accordingly. The utilization of machine learning in the medical domain has witnessed a notable surge due to its ability to discern patterns from vast amounts of data. Machine learning algorithms that can categorize cases of cardiovascular illness may help doctors reduce the number of wrong diagnoses. This research investigates the efficacy of different machine learning algorithms in predicting cardiovascular disease in accordance with risk factors. This study utilizes a variety of machine learning models, More >

  • Open Access

    ARTICLE

    Heart Disease Prediction Using Convolutional Neural Network with Elephant Herding Optimization

    P. Nandakumar, R. Subhashini*

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 57-75, 2024, DOI:10.32604/csse.2023.042294

    Abstract Heart disease is a major cause of death for many people in the world. Each year the death rate of people affected with heart disease increased a lot. Machine learning models have been widely used for the prediction of heart disease from the different University of California Irvine (UCI) Machine Learning Repositories. But, due to certain data, it predicts less accurately, whereas, for large data, its sub-model deep learning is used. Our literature work has identified that only traditional methods are used for the prediction of heart disease. It will produce less accuracy. To produce… More >

  • Open Access

    ARTICLE

    Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals

    Muhammad Tayyeb1, Muhammad Umer1, Khaled Alnowaiser2, Saima Sadiq3, Ala’ Abdulmajid Eshmawi4, Rizwan Majeed5, Abdullah Mohamed6, Houbing Song7, Imran Ashraf8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1677-1694, 2023, DOI:10.32604/cmes.2023.026535

    Abstract Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately. Currently, electrocardiogram (ECG) data is analyzed by medical experts to determine the cardiac abnormality, which is time-consuming. In addition, the diagnosis requires experienced medical experts and is error-prone. However, automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures. This study proposes a simple multilayer perceptron (MLP) model for heart disease prediction to reduce computational complexity. ECG dataset containing averaged signals More >

  • Open Access

    ARTICLE

    An Improved Ensemble Learning Approach for Heart Disease Prediction Using Boosting Algorithms

    Shahid Mohammad Ganie1, Pijush Kanti Dutta Pramanik2, Majid Bashir Malik3, Anand Nayyar4, Kyung Sup Kwak5,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3993-4006, 2023, DOI:10.32604/csse.2023.035244

    Abstract Cardiovascular disease is among the top five fatal diseases that affect lives worldwide. Therefore, its early prediction and detection are crucial, allowing one to take proper and necessary measures at earlier stages. Machine learning (ML) techniques are used to assist healthcare providers in better diagnosing heart disease. This study employed three boosting algorithms, namely, gradient boost, XGBoost, and AdaBoost, to predict heart disease. The dataset contained heart disease-related clinical features and was sourced from the publicly available UCI ML repository. Exploratory data analysis is performed to find the characteristics of data samples about descriptive and… More >

  • Open Access

    ARTICLE

    Modelling a Fused Deep Network Model for Pneumonia Prediction

    M. A. Ramitha*, N. Mohanasundaram, R. Santhosh

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2725-2739, 2023, DOI:10.32604/csse.2023.030504

    Abstract Deep Learning (DL) is known for its golden standard computing paradigm in the learning community. However, it turns out to be an extensively utilized computing approach in the ML field. Therefore, attaining superior outcomes over cognitive tasks based on human performance. The primary benefit of DL is its competency in learning massive data. The DL-based technologies have grown faster and are widely adopted to handle the conventional approaches resourcefully. Specifically, various DL approaches outperform the conventional ML approaches in real-time applications. Indeed, various research works are reviewed to understand the significance of the individual DL… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network Model for Wheat Crop Disease Prediction

    Mahmood Ashraf1,*, Mohammad Abrar2, Nauman Qadeer3, Abdulrahman A. Alshdadi4, Thabit Sabbah5, Muhammad Attique Khan6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3867-3882, 2023, DOI:10.32604/cmc.2023.035498

    Abstract Wheat is the most important cereal crop, and its low production incurs import pressure on the economy. It fulfills a significant portion of the daily energy requirements of the human body. The wheat disease is one of the major factors that result in low production and negatively affects the national economy. Thus, timely detection of wheat diseases is necessary for improving production. The CNN-based architectures showed tremendous achievement in the image-based classification and prediction of crop diseases. However, these models are computationally expensive and need a large amount of training data. In this research, a… More >

  • Open Access

    ARTICLE

    Classifying Big Medical Data through Bootstrap Decision Forest Using Penalizing Attributes

    V. Gowri1,*, V. Vijaya Chamundeeswari2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3675-3690, 2023, DOI:10.32604/iasc.2023.035817

    Abstract Decision forest is a well-renowned machine learning technique to address the detection and prediction problems related to clinical data. But, the traditional decision forest (DF) algorithms have lower classification accuracy and cannot handle high-dimensional feature space effectively. In this work, we propose a bootstrap decision forest using penalizing attributes (BFPA) algorithm to predict heart disease with higher accuracy. This work integrates a significance-based attribute selection (SAS) algorithm with the BFPA classifier to improve the performance of the diagnostic system in identifying cardiac illness. The proposed SAS algorithm is used to determine the correlation among attributes… More >

  • Open Access

    ARTICLE

    Sensor-Based Gait Analysis for Parkinson’s Disease Prediction

    Sathya Bama B*, Bevish Jinila Y

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2085-2097, 2023, DOI:10.32604/iasc.2023.028481

    Abstract Parkinson’s disease is identified as one of the key neurodegenerative disorders occurring due to the damages present in the central nervous system. The cause of such brain damage seems to be fully explained in many research studies, but the understanding of its functionality remains to be impractical. Specifically, the development of a quantitative disease prediction model has evolved in recent decades. Moreover, accelerometer sensor-based gait analysis is accepted as an important tool for recognizing the walking behavior of the patients during the early prediction and diagnosis of Parkinson’s disease. This type of minimal infrastructure equipment… More >

Displaying 1-10 on page 1 of 32. Per Page