Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Fault Diagnosis of Power Transformer Based on Improved ACGAN Under Imbalanced Data

    Tusongjiang. Kari1, Lin Du1, Aisikaer. Rouzi2, Xiaojing Ma1,*, Zhichao Liu1, Bo Li1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4573-4592, 2023, DOI:10.32604/cmc.2023.037954

    Abstract The imbalance of dissolved gas analysis (DGA) data will lead to over-fitting, weak generalization and poor recognition performance for fault diagnosis models based on deep learning. To handle this problem, a novel transformer fault diagnosis method based on improved auxiliary classifier generative adversarial network (ACGAN) under imbalanced data is proposed in this paper, which meets both the requirements of balancing DGA data and supplying accurate diagnosis results. The generator combines one-dimensional convolutional neural networks (1D-CNN) and long short-term memories (LSTM), which can deeply extract the features from DGA samples and be greatly beneficial to ACGAN’s data balancing and fault diagnosis.… More >

  • Open Access


    Novel Power Transformer Fault Diagnosis Using Optimized Machine Learning Methods

    Ibrahim B.M. Taha1, Diaa-Eldin A. Mansour2,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 739-752, 2021, DOI:10.32604/iasc.2021.017703

    Abstract Power transformer is one of the more important components of electrical power systems. The early detection of transformer faults increases the power system reliability. Dissolved gas analysis (DGA) is one of the most favorite approaches used for power transformer fault prediction due to its easiness and applicability for online diagnosis. However, the imbalanced, insufficient and overlap of DGA dataset impose a challenge towards powerful and accurate diagnosis. In this work, a novel fault diagnosis for power transformers is introduced based on DGA by using data transformation and six optimized machine learning (OML) methods. Four data transformation techniques are used with… More >

Displaying 1-10 on page 1 of 2. Per Page