Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    A Cloud-Based Distributed System for Story Visualization Using Stable Diffusion

    Chuang-Chieh Lin1, Yung-Shen Huang2, Shih-Yeh Chen2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.072890 - 09 December 2025

    Abstract With the rapid development of generative artificial intelligence (GenAI), the task of story visualization, which transforms natural language narratives into coherent and consistent image sequences, has attracted growing research attention. However, existing methods still face limitations in balancing multi-frame character consistency and generation efficiency, which restricts their feasibility for large-scale practical applications. To address this issue, this study proposes a modular cloud-based distributed system built on Stable Diffusion. By separating the character generation and story generation processes, and integrating multi-feature control techniques, a caching mechanism, and an asynchronous task queue architecture, the system enhances generation… More >

  • Open Access

    ARTICLE

    Distributed Computing-Based Optimal Route Finding Algorithm for Trusted Devices in the Internet of Things

    Amal Al-Rasheed1, Rahim Khan2,*, Fahad Alturise3, Salem Alkhalaf4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 957-973, 2025, DOI:10.32604/cmc.2025.064102 - 09 June 2025

    Abstract The Internet of Things (IoT) is a smart infrastructure where devices share captured data with the respective server or edge modules. However, secure and reliable communication is among the challenging tasks in these networks, as shared channels are used to transmit packets. In this paper, a decision tree is integrated with other metrics to form a secure distributed communication strategy for IoT. Initially, every device works collaboratively to form a distributed network. In this model, if a device is deployed outside the coverage area of the nearest server, it communicates indirectly through the neighboring devices.… More >

  • Open Access

    REVIEW

    A Survey of Spark Scheduling Strategy Optimization Techniques and Development Trends

    Chuan Li, Xuanlin Wen*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3843-3875, 2025, DOI:10.32604/cmc.2025.063047 - 19 May 2025

    Abstract Spark performs excellently in large-scale data-parallel computing and iterative processing. However, with the increase in data size and program complexity, the default scheduling strategy has difficulty meeting the demands of resource utilization and performance optimization. Scheduling strategy optimization, as a key direction for improving Spark’s execution efficiency, has attracted widespread attention. This paper first introduces the basic theories of Spark, compares several default scheduling strategies, and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency. Subsequently, existing scheduling optimization schemes are summarized based on three scheduling modes: load characteristics, cluster characteristics, and matching More >

  • Open Access

    ARTICLE

    L-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1975-1994, 2024, DOI:10.32604/cmc.2024.049228 - 15 May 2024

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is… More >

  • Open Access

    ARTICLE

    Research on Performance Optimization of Spark Distributed Computing Platform

    Qinlu He1,*, Fan Zhang1, Genqing Bian1, Weiqi Zhang1, Zhen Li2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2833-2850, 2024, DOI:10.32604/cmc.2024.046807 - 15 May 2024

    Abstract Spark, a distributed computing platform, has rapidly developed in the field of big data. Its in-memory computing feature reduces disk read overhead and shortens data processing time, making it have broad application prospects in large-scale computing applications such as machine learning and image processing. However, the performance of the Spark platform still needs to be improved. When a large number of tasks are processed simultaneously, Spark’s cache replacement mechanism cannot identify high-value data partitions, resulting in memory resources not being fully utilized and affecting the performance of the Spark platform. To address the problem that… More >

  • Open Access

    ARTICLE

    Research on a Fog Computing Architecture and BP Algorithm Application for Medical Big Data

    Baoling Qin*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 255-267, 2023, DOI:10.32604/iasc.2023.037556 - 29 April 2023

    Abstract Although the Internet of Things has been widely applied, the problems of cloud computing in the application of digital smart medical Big Data collection, processing, analysis, and storage remain, especially the low efficiency of medical diagnosis. And with the wide application of the Internet of Things and Big Data in the medical field, medical Big Data is increasing in geometric magnitude resulting in cloud service overload, insufficient storage, communication delay, and network congestion. In order to solve these medical and network problems, a medical big-data-oriented fog computing architecture and BP algorithm application are proposed, and… More >

  • Open Access

    ARTICLE

    Data Utilization-Based Adaptive Data Management Method for Distributed Storage System in WAN Environment

    Sanghyuck Nam1, Jaehwan Lee2, Kyoungchan Kim3, Mingyu Jo1, Sangoh Park1,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3457-3469, 2023, DOI:10.32604/csse.2023.035428 - 03 April 2023

    Abstract Recently, research on a distributed storage system that efficiently manages a large amount of data has been actively conducted following data production and demand increase. Physical expansion limits exist for traditional standalone storage systems, such as I/O and file system capacity. However, the existing distributed storage system does not consider where data is consumed and is more focused on data dissemination and optimizing the lookup cost of data location. And this leads to system performance degradation due to low locality occurring in a Wide Area Network (WAN) environment with high network latency. This problem hinders… More >

  • Open Access

    ARTICLE

    An Efficient Scheme for Data Pattern Matching in IoT Networks

    Ashraf Ali*, Omar A. Saraereh

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2203-2219, 2022, DOI:10.32604/cmc.2022.025994 - 29 March 2022

    Abstract The Internet has become an unavoidable trend of all things due to the rapid growth of networking technology, smart home technology encompasses a variety of sectors, including intelligent transportation, allowing users to communicate with anybody or any device at any time and from anywhere. However, most things are different now. Background: Structured data is a form of separated storage that slows down the rate at which everything is connected. Data pattern matching is commonly used in data connectivity and can help with the issues mentioned above. Aim: The present pattern matching system is ineffective due… More >

  • Open Access

    ARTICLE

    Machine Learning-based Optimal Framework for Internet of Things Networks

    Moath Alsafasfeh1,*, Zaid A. Arida2, Omar A. Saraereh3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5355-5380, 2022, DOI:10.32604/cmc.2022.024093 - 14 January 2022

    Abstract Deep neural networks (DNN) are widely employed in a wide range of intelligent applications, including image and video recognition. However, due to the enormous amount of computations required by DNN. Therefore, performing DNN inference tasks locally is problematic for resource-constrained Internet of Things (IoT) devices. Existing cloud approaches are sensitive to problems like erratic communication delays and unreliable remote server performance. The utilization of IoT device collaboration to create distributed and scalable DNN task inference is a very promising strategy. The existing research, on the other hand, exclusively looks at the static split method in… More >

  • Open Access

    ARTICLE

    An Optimized Resource Scheduling Strategy for Hadoop Speculative Execution Based on Non-cooperative Game Schemes

    Yinghang Jiang1, Qi Liu2,3,*, Williams Dannah1, Dandan Jin2, Xiaodong Liu3, Mingxu Sun4,*

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 713-729, 2020, DOI:10.32604/cmc.2020.04604

    Abstract Hadoop is a well-known parallel computing system for distributed computing and large-scale data processes. “Straggling” tasks, however, have a serious impact on task allocation and scheduling in a Hadoop system. Speculative Execution (SE) is an efficient method of processing “Straggling” Tasks by monitoring real-time running status of tasks and then selectively backing up “Stragglers” in another node to increase the chance to complete the entire mission early. Present speculative execution strategies meet challenges on misjudgement of “Straggling” tasks and improper selection of backup nodes, which leads to inefficient implementation of speculative executive processes. This paper… More >

Displaying 1-10 on page 1 of 15. Per Page