Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

    Huaiqin Liu1, Meng Li1, Jianwen Shao2, Weishen Zhang1, Qifan Yang1, Yutong Li1, Tian Su1,3,*, Xuefeng Mei4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1563-1588, 2025, DOI:10.32604/sdhm.2025.073009 - 17 November 2025

    Abstract Rock collapse is a significant geological disaster that poses a serious threat to life and property in mountainous regions worldwide. Investigating the response of protective structures to rockfall impacts can provide valuable references for the design and placement of such structures. In this study, RocPro3D and ABAQUS were employed to comprehensively analyze rockfall movement trajectories and the structural response upon impact. The results indicate that when the impact velocity of rockfall at the protective structure reaches 20–30 m/sec, the corresponding bounce height ranges from 5 to 8 m, and most rockfall accumulates at the slope More > Graphic Abstract

    Dynamic Response Research of Dangerous Rockfall Impact Protection Structures

  • Open Access

    PROCEEDINGS

    Dynamic Response of Fractional-Order Thermal-Magnetic-Elastic Coupled Solids with Spherical Holes Based on Moore-Gibson-Thompson Theory

    Lixu Chen, Yongbin Ma*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012272

    Abstract This study establishes an innovative theoretical framework for thermo-magneto-elastic coupling, based on the generalized thermoelastic theory of Moore-Gibson-Thompson (MGT), and significantly extends the constitutive equation by introducing spatio-temporal nonlocal parameters to more accurately describe the thermodynamic behavior of materials under extreme conditions, such as ultrafast laser heating and micro-nano scale environments. This paper innovatively adopts tempered Caputo fractional derivatives to describe the memory effect of the system, which can more accurately describe complex thermodynamic processes and significantly enhance the physical authenticity of the model. The dynamic response of magneto-thermo-elasticity of spherical cavity structures under time-varying… More >

  • Open Access

    ARTICLE

    Seismic Vibration Control of Wind Turbine Towers with Bidirectional Tuned Bellow Liquid Column Damper

    Xiwei Wang1, Wanrun Li1,2,3,*, Wenhai Zhao1, Yining Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1241-1263, 2025, DOI:10.32604/sdhm.2025.063736 - 05 September 2025

    Abstract To address the vibration issues of wind turbine towers, this paper proposes a bidirectional tuned bellow liquid column damper (BTBLCD). The configuration of the proposed BTBLCD is first described in detail, and its energy dissipation mechanism is derived through theoretical analysis. A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed. The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations. Finally, a 1/10 scaled model of the wind turbine tower is constructed, and the energy dissipation performance of the… More >

  • Open Access

    ARTICLE

    Dynamic Response and Failure Analysis of Steel Sheet Pile Support Structures in Bank Slopes under Pile Driving Impact Loads

    Ling Ji1,2,*, Nan Jiang3, Yingbo Ren3, Tao Yin1, Haibo Wang1, Bing Cheng4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 267-288, 2025, DOI:10.32604/cmes.2025.066596 - 31 July 2025

    Abstract During the construction of bank slopes involving pile driving, ensuring slope stability is crucial. This requires the design of appropriate support systems and a thorough evaluation of the failure mechanisms of pile structures under dynamic loading conditions. Based on the Huarong Coal Wharf project, various support schemes are analyzed using numerical simulation methods to calculate and compare slope stability coefficients. The optimal scheme is then identified. Under the selected support scheme, a numerical model of double-row suspended steel sheet piles is developed to investigate the dynamic response of the pile structures under pile driving loads.… More >

  • Open Access

    ARTICLE

    Dynamic Response of a Nonlocal Multiferroic Laminated Composite with Interface Stress Imperfections

    Hsin-Yi Kuo*, Li-Huan Yang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 841-872, 2025, DOI:10.32604/cmes.2025.065452 - 31 July 2025

    Abstract This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic (MEE) laminated composites with interface stress imperfections using an analytical approach. The pseudo-Stroh formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer. Both the propagator and interface matrices were formulated to determine the recursive fields. Subsequently, the dispersion equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top and bottom surfaces of the plate. Dispersion curves, mode shapes, and natural frequencies were calculated for sandwich plates composed of BaTiO3 and More >

  • Open Access

    ARTICLE

    Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas

    Yujie Li1, Zhongju Feng1,*, Fuchun Wang1, Jiang Guan2, Xiaoqian Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1549-1573, 2025, DOI:10.32604/cmes.2025.064785 - 30 May 2025

    Abstract To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas, a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established. The 0.2–0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body. The results show that the soil layer covering the bedrock amplifies the peak pile acceleration, and the amplifying effect decreases with… More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Sandwich Panel with Re-Entrant Honeycomb Core Reinforced by Catenary Under Air Blast

    Zhen Zou1,2, Fengxiang Xu1,2,*, Yifan Zhu1,2, Xiaoqiang Niu1,2, Xiao Geng1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011093

    Abstract Honeycomb cored sandwich structures have been attracted extensive attentions attributed to outstanding explosion and impact protection capability. Herein, in order to improve the anti-blast performance of re-entrant honeycombs (RH) cored sandwich panel, the conventional RH is reinforced by introducing catenary in the form of connecting both ends of horizontal cell walls and catenary. The results show that the deformation mode of the reinforced RHs (RRH) becomes more stable and regular compared to RHs, and the energy absorption of classic RHs can be enhanced because the reinforced structures and the improved auxetic deformation are employed simultaneously.… More >

  • Open Access

    CORRECTION

    Correction: Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1,2, Huali Pan1,*, Jiangcheng Huang3, Bilal Ahmed4, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2625-2625, 2024, DOI:10.32604/cmes.2024.059706 - 31 October 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Simulation and Traffic Safety Assessment of Heavy-Haul Railway Train-Bridge Coupling System under Earthquake Action

    Liangwei Jiang1,2, Wei Zhang2, Hongyin Yang1,2,3,*, Xiucheng Zhang1, Jinghan Wu2, Zhangjun Liu2

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 835-851, 2024, DOI:10.32604/sdhm.2024.051125 - 20 September 2024

    Abstract Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis, a combined simulation system of train-bridge coupling system (TBCS) under earthquake (MAETB) is developed based on the cooperative work of MATLAB and ANSYS. The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway. The influence of different driving speeds, seismic wave intensities, and traveling wave effects on the dynamic response of the TBCS under More >

  • Open Access

    ARTICLE

    Numerical Simulation-Based Analysis of the Impact of Overloading on Segmentally Assembled Bridges

    Donghui Ma1, Wenqi Wu2, Yuan Li1, Lun Zhao1, Yingchun Cai2,*, Pan Guo2,*, Shaolin Yang2

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 663-681, 2024, DOI:10.32604/sdhm.2024.052677 - 19 July 2024

    Abstract Segmentally assembled bridges are increasingly finding engineering applications in recent years due to their unique advantages, especially as urban viaducts. Vehicle loads are one of the most important variable loads acting on bridge structures. Accordingly, the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present. This paper establishes the finite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge structure. First, a finite element model corresponding to the target bridge is established based on ABAQUS… More >

Displaying 1-10 on page 1 of 39. Per Page