Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Extending DDPG with Physics-Informed Constraints for Energy-Efficient Robotic Control

    Abubakar Elsafi1,*, Arafat Abdulgader Mohammed Elhag2, Lubna A. Gabralla3, Ali Ahmed4, Ashraf Osman Ibrahim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 621-647, 2025, DOI:10.32604/cmes.2025.072726 - 30 October 2025

    Abstract Energy efficiency stands as an essential factor when implementing deep reinforcement learning (DRL) policies for robotic control systems. Standard algorithms, including Deep Deterministic Policy Gradient (DDPG), primarily optimize task rewards but at the cost of excessively high energy consumption, making them impractical for real-world robotic systems. To address this limitation, we propose Physics-Informed DDPG (PI-DDPG), which integrates physics-based energy penalties to develop energy-efficient yet high-performing control policies. The proposed method introduces adaptive physics-informed constraints through a dynamic weighting factor (), enabling policies that balance reward maximization with energy savings. Our motivation is to overcome the… More >

  • Open Access

    ARTICLE

    Optimal Load Forecasting Model for Peer-to-Peer Energy Trading in Smart Grids

    Lijo Jacob Varghese1, K. Dhayalini2, Suma Sira Jacob3, Ihsan Ali4,*, Abdelzahir Abdelmaboud5, Taiseer Abdalla Elfadil Eisa6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1053-1067, 2022, DOI:10.32604/cmc.2022.019435 - 07 September 2021

    Abstract Peer-to-Peer (P2P) electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer. It also decreases the quantity of line loss incurred in Smart Grid (SG). But, uncertainities in demand and supply of the electricity might lead to instability in P2P market for both prosumer and consumer. In recent times, numerous Machine Learning (ML)-enabled load predictive techniques have been developed, while most of the existing studies did not consider its implicit features, optimal parameter selection, and prediction stability. In order to overcome fulfill this research gap, the current research paper… More >

  • Open Access

    ARTICLE

    Rate-Energy Tradeoff for Wireless Simultaneous Information and Power Transfer in Full-Duplex and Half-Duplex Systems

    Xiaoye Shi1, *, Jin Sun1, Dongming Li1, Fei Ding2, Zhaowei Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1373-1384, 2020, DOI:10.32604/cmc.2020.011018 - 20 August 2020

    Abstract In this paper, we study the rate-energy tradeoff for wireless simultaneous information and power transfer in full-duplex and half-duplex scenarios. To this end, the weighting function of energy efficiency and transmission rate, as rate-energy tradeoff metric is first introduced and the metric optimization problem is formulated. Applying Karush-Kuhn-Tucker (KKT) conditions for Lagrangian optimality and a series of mathematical approximations, the metric optimization problem can be simplified. The closed-form solution of the power ratio is obtained, building direct relationship between power ratio and the rate-energy tradeoff metric. By choosing power ratio, one can make the tradeoff… More >

Displaying 1-10 on page 1 of 3. Per Page