Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (201)
  • Open Access

    ARTICLE

    Performance Characterization of CR/PU Asphalt for Potential Application in Assembled Fast-Repairing Engineering

    Hong Pang1, Ao Lu1, Ming Xiong1, Chen Chen1, Xian Cao1, Xiong Xu2,3,*, Jing Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1063-1074, 2024, DOI:10.32604/fdmp.2023.044000

    Abstract Conventional repairing methods for asphalt pavement have some inconveniences, such as insufficient strength, and are typically time-consuming. To address these issues, this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes. A series of composite modified asphalt binders with 10% crumb rubber (CR) and different dosages (0%, 1%, 3%, 5%) of polyurethane (PU) are examined to determine the optimized binder. Subsequently, the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties, such as moisture-induced damage, high-temperature deformation, and More >

  • Open Access

    ARTICLE

    Static Analysis Techniques for Fixing Software Defects in MPI-Based Parallel Programs

    Norah Abdullah Al-Johany1,*, Sanaa Abdullah Sharaf1,2, Fathy Elbouraey Eassa1,2, Reem Abdulaziz Alnanih1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3139-3173, 2024, DOI:10.32604/cmc.2024.047392

    Abstract The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memory systems. However, MPI implementations can contain defects that impact the reliability and performance of parallel applications. Detecting and correcting these defects is crucial, yet there is a lack of published models specifically designed for correcting MPI defects. To address this, we propose a model for detecting and correcting MPI defects (DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blocking point-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defects addressed by… More >

  • Open Access

    ARTICLE

    Developing Lexicons for Enhanced Sentiment Analysis in Software Engineering: An Innovative Multilingual Approach for Social Media Reviews

    Zohaib Ahmad Khan1, Yuanqing Xia1,*, Ahmed Khan2, Muhammad Sadiq2, Mahmood Alam3, Fuad A. Awwad4, Emad A. A. Ismail4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2771-2793, 2024, DOI:10.32604/cmc.2024.046897

    Abstract Sentiment analysis is becoming increasingly important in today’s digital age, with social media being a significant source of user-generated content. The development of sentiment lexicons that can support languages other than English is a challenging task, especially for analyzing sentiment analysis in social media reviews. Most existing sentiment analysis systems focus on English, leaving a significant research gap in other languages due to limited resources and tools. This research aims to address this gap by building a sentiment lexicon for local languages, which is then used with a machine learning algorithm for efficient sentiment analysis.… More >

  • Open Access

    ARTICLE

    Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques

    Ahsan Wajahat1, Jingsha He1, Nafei Zhu1, Tariq Mahmood2,3, Tanzila Saba2, Amjad Rehman Khan2, Faten S. Alamri4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 651-673, 2024, DOI:10.32604/cmc.2024.047530

    Abstract The growing usage of Android smartphones has led to a significant rise in incidents of Android malware and privacy breaches. This escalating security concern necessitates the development of advanced technologies capable of automatically detecting and mitigating malicious activities in Android applications (apps). Such technologies are crucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world. Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitations they require substantial computational resources and are prone to a high frequency of false positives. This… More >

  • Open Access

    REVIEW

    Review of Collocation Methods and Applications in Solving Science and Engineering Problems

    Weiwu Jiang1, Xiaowei Gao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 41-76, 2024, DOI:10.32604/cmes.2024.048313

    Abstract The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations. This paper provides a comprehensive review of collocation methods and their applications, focused on elasticity, heat conduction, electromagnetic field analysis, and fluid dynamics. The merits of the collocation method can be attributed to the need for element mesh, simple implementation, high computational efficiency, and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method. Beginning with the fundamental principles of the collocation method, the discretization process in the continuous… More >

  • Open Access

    ARTICLE

    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive… More >

  • Open Access

    ARTICLE

    Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions

    Jiaqi Wu1, Li Zhuo1,*, Jianliang Pei1, Yao Li2, Hongqiang Xie1, Jiaming Wu1, Huaizhong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 621-645, 2024, DOI:10.32604/cmes.2024.046398

    Abstract The surrounding geological conditions and supporting structures of underground engineering are often updated during construction, and these updates require repeated numerical modeling. To improve the numerical modeling efficiency of underground engineering, a modularized and parametric modeling cloud server is developed by using Python codes. The basic framework of the cloud server is as follows: input the modeling parameters into the web platform, implement Rhino software and FLAC3D software to model and run simulations in the cloud server, and return the simulation results to the web platform. The modeling program can automatically generate instructions that can run… More >

  • Open Access

    ARTICLE

    On the Engineering Properties of TPV derived from Hypalon, PP and a Compatibilizer (PMES-MA) prepared by Dynamic Vulcanization

    ASIS K. MANDAL1, DEBABRATA CHAKRABORTY2, MAHUYA DAS3, SAMIR K SIDDHANTA4,*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 21-34, 2021, DOI:10.32381/JPM.2021.38.1-2.3

    Abstract Elastomeric chlorosulfonated polyethylene (Hypalon) and thermoplastic polypropylene (PP) based thermoplastic Vulcanizates (TPVs) were prepared in presence of different doses of partial methyl ester of styrene-maleic anhydride copolymer (PMES-MA) as compatibilizer employing dynamic vulcanization technique. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between hypalon and compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two-phase morphologies were clearly observed by scanning electron More >

  • Open Access

    ARTICLE

    RADIO FREQUENCY HEATING OF IMPLANTED TISSUE ENGINEERED SCAFFOLDS: SIMULATION AND EXPERIMENTAL STUDIES

    Mohammad Izadifara,b,*, Xiongbiao Chena,b

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-7, 2012, DOI:10.5098/hmt.v3.4.3004

    Abstract Heat can be potentially used for accelerating biodegradation of implanted tissue engineered scaffolds. Cyclic and continuous radio frequency (RF) heating was applied to implanted chitosan and alginate scaffolds at 4 applied voltages, 3 frequencies, and 2 thermally conditioning environments. A 3D finite element model was developed to simulate the RF treatment. A uniform RF heating was achieved at the scaffold top. For alginate, voltage was the only significant RF heating factor while both frequency and voltage significantly affected RF heating of chitosan. Less temperature gradient across the scaffold was achieved at a conditioning environment at More >

  • Open Access

    ARTICLE

    Synergistic Swarm Optimization Algorithm

    Sharaf Alzoubi1, Laith Abualigah2,3,4,5,6,7,8,*, Mohamed Sharaf9, Mohammad Sh. Daoud10, Nima Khodadadi11, Heming Jia12

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2557-2604, 2024, DOI:10.32604/cmes.2023.045170

    Abstract This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm (SSOA). The SSOA combines the principles of swarm intelligence and synergistic cooperation to search for optimal solutions efficiently. A synergistic cooperation mechanism is employed, where particles exchange information and learn from each other to improve their search behaviors. This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities. Furthermore, adaptive mechanisms, such as dynamic parameter adjustment and diversification strategies, are incorporated to balance exploration and exploitation. By leveraging the collaborative nature of swarm intelligence and More >

Displaying 1-10 on page 1 of 201. Per Page