Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Soft Computing Based Evolutionary Multi-Label Classification

    Rubina Aslam1,*, Manzoor Illahi Tamimy1, Waqar Aslam2

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1233-1249, 2020, DOI:10.32604/iasc.2020.013086 - 24 December 2020

    Abstract Machine Learning (ML) has revolutionized intelligent systems that range from self-driving automobiles, search engines, business/market analysis, fraud detection, network intrusion investigation, and medical diagnosis. Classification lies at the core of Machine Learning and Multi-label Classification (MLC) is the closest to real-life problems related to heuristics. It is a type of classification problem where multiple labels or classes can be assigned to more than one instance simultaneously. The level of complexity in MLC is increased by factors such as data imbalance, high dimensionality, label correlations, and noise. Conventional MLC techniques such as ensembles-based approaches, Multi-label Stacking,… More >

  • Open Access

    ARTICLE

    Hybrid Imperialist Competitive Evolutionary Algorithm for Solving Biobjective Portfolio Problem

    Chun’an Liu1,*, Qian Lei2, Huamin Jia3

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1477-1492, 2020, DOI:10.32604/iasc.2020.011853 - 24 December 2020

    Abstract Portfolio optimization is an effective way to diversify investment risk and optimize asset management. Many multiobjective optimization mathematical models and metaheuristic intelligent algorithms have been proposed to solve portfolio problem under an ideal condition. This paper presents a biobjective portfolio optimization model under the assumption of no short selling. In order to obtain sufficient number of portfolio optimal solutions uniformly distributed on the portfolio efficient Pareto front, a hybrid imperialist competitive evolutionary algorithm which combines a multi-colony levy crossover operator and a simple-colony moving operator with random perturbation is also given. The performance of the More >

  • Open Access

    ARTICLE

    A Clustering Method Based on Brain Storm Optimization Algorithm

    Tianyu Wang, Yu Xue, Yan Zhao, Yuxiang Wang*, Yan Zhang, Yuxiang He

    Journal of Information Hiding and Privacy Protection, Vol.2, No.3, pp. 135-142, 2020, DOI:10.32604/jihpp.2020.010362 - 18 December 2020

    Abstract In the field of data mining and machine learning, clustering is a typical issue which has been widely studied by many researchers, and lots of effective algorithms have been proposed, including K-means, fuzzy c-means (FCM) and DBSCAN. However, the traditional clustering methods are easily trapped into local optimum. Thus, many evolutionary-based clustering methods have been investigated. Considering the effectiveness of brain storm optimization (BSO) in increasing the diversity while the diversity optimization is performed, in this paper, we propose a new clustering model based on BSO to use the global ability of BSO. In our… More >

  • Open Access

    ARTICLE

    An Improved Algorithm of K-means Based on Evolutionary Computation

    Yunlong Wang1,2,3, Xiong Luo1,2,4,*, Jing Zhang1,2,3, Zhigang Zhao1, Jun Zhang5

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 961-971, 2020, DOI:10.32604/iasc.2020.010128

    Abstract K-means is a simple and commonly used algorithm, which is widely applied in many fields due to its fast convergence and distinctive performance. In this paper, a novel algorithm is proposed to help K-means jump out of a local optimum on the basis of several ideas from evolutionary computation, through the use of random and evolutionary processes. The experimental results show that the proposed algorithm is capable of improving the accuracy of K-means and decreasing the SSE of K-means, which indicates that the proposed algorithm can prevent K-means from falling into the local optimum to More >

  • Open Access

    ARTICLE

    Improvement of the Firework Algorithm for Classification Problems

    Yu Xue, Sow Alpha Amadou*, Yan Zhao

    Journal of Cyber Security, Vol.2, No.4, pp. 191-196, 2020, DOI:10.32604/jcs.2020.014045 - 07 December 2020

    Abstract Attracted numerous analysts’ consideration, classification is one of the primary issues in Machine learning. Numerous evolutionary algorithms (EAs) were utilized to improve their global search ability. In the previous years, many scientists have attempted to tackle this issue, yet regardless of the endeavors, there are still a few inadequacies. Based on solving the classification problem, this paper introduces a new optimization classification model, which can be applied to the majority of evolutionary computing (EC) techniques. Firework algorithm (FWA) is one of the EC methods, Although the Firework algorithm (FWA) is a proficient algorithm for solving More >

  • Open Access

    ARTICLE

    An Optimization Scheme for Task Offloading and Resource Allocation in Vehicle Edge Networks

    Yuxin Xu1, Zilong Jin1,2,*, Xiaorui Zhang1, Lejun Zhang3

    Journal on Internet of Things, Vol.2, No.4, pp. 163-173, 2020, DOI:10.32604/jiot.2020.011792 - 22 September 2020

    Abstract The vehicle edge network (VEN) has become a new research hotspot in the Internet of Things (IOT). However, many new delays are generated during the vehicle offloading the task to the edge server, which will greatly reduce the quality of service (QOS) provided by the vehicle edge network. To solve this problem, this paper proposes an evolutionary algorithm-based (EA) task offloading and resource allocation scheme. First, the delay of offloading task to the edge server is generally defined, then the mathematical model of problem is given. Finally, the objective function is optimized by evolutionary algorithm, More >

  • Open Access

    ARTICLE

    Improved Teaching Learning Based Optimization and Its Application in Parameter Estimation of Solar Cell Models

    Qinqin Fan1,*, Yilian Zhang2, Zhihuan Wang1

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 1-12, 2020, DOI:10.31209/2018.100000042

    Abstract Weak global exploration capability is one of the primary drawbacks in teaching learning based optimization (TLBO). To enhance the search capability of TLBO, an improved TLBO (ITLBO) is introduced in this study. In ITLBO, a uniform random number is replaced by a normal random number, and a weighted average position of the current population is chosen as the other teacher. The performance of ITLBO is compared with that of five meta-heuristic algorithms on a well-known test suite. Results demonstrate that the average performance of ITLBO is superior to that of the compared algorithms. Finally, ITLBO More >

  • Open Access

    ARTICLE

    Analysis of Twitter Data Using Evolutionary Clustering during the COVID-19 Pandemic

    Ibrahim Arpaci1, Shadi Alshehabi2, Mostafa Al-Emran3, *, Mahmoud Khasawneh4, Ibrahim Mahariq4, Thabet Abdeljawad5, 6, 7, Aboul Ella Hassanien8, 9

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 193-204, 2020, DOI:10.32604/cmc.2020.011489 - 23 July 2020

    Abstract People started posting textual tweets on Twitter as soon as the novel coronavirus (COVID-19) emerged. Analyzing these tweets can assist institutions in better decision-making and prioritizing their tasks. Therefore, this study aimed to analyze 43 million tweets collected between March 22 and March 30, 2020 and describe the trend of public attention given to the topics related to the COVID-19 epidemic using evolutionary clustering analysis. The results indicated that unigram terms were trended more frequently than bigram and trigram terms. A large number of tweets about the COVID-19 were disseminated and received widespread public attention… More >

  • Open Access

    ARTICLE

    Bilateral Collaborative Optimization for Cloud Manufacturing Service

    Bin Xu1, 2, Yong Tang1, Yi Zhu1, Wenqing Yan1, Cheng He3, Jin Qi1, *

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 2031-2042, 2020, DOI:10.32604/cmc.2020.011149 - 30 June 2020

    Abstract Manufacturing service composition of the supply side and scheduling of the demand side are two important components of Cloud Manufacturing, which directly affect the quality of Cloud Manufacturing services. However, the previous studies on the two components are carried out independently and thus ignoring the internal relations and mutual constraints. Considering the two components on both sides of the supply and the demand of Cloud Manufacturing services at the same time, a Bilateral Collaborative Optimization Model of Cloud Manufacturing (BCOM-CMfg) is constructed in this paper. In BCOM-CMfg, to solve the manufacturing service scheduling problem on… More >

  • Open Access

    ARTICLE

    Discrete Circular Distributions with Applications to Shared Orthologs of Paired Circular Genomes

    Tomoaki Imoto1, *, Grace S. Shieh2, *, Kunio Shimizu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1131-1149, 2020, DOI:10.32604/cmes.2020.08466 - 28 May 2020

    Abstract For structural comparisons of paired prokaryotic genomes, an important topic in synthetic and evolutionary biology, the locations of shared orthologous genes (henceforth orthologs) are observed as binned data. This and other data, e.g., wind directions recorded at monitoring sites and intensive care unit arrival times on the 24-hour clock, are counted in binned circular arcs, thus modeling them by discrete circular distributions (DCDs) is required. We propose a novel method to construct a DCD from a base continuous circular distribution (CCD). The probability mass function is defined to take the normalized values of the probability… More >

Displaying 81-90 on page 9 of 106. Per Page