Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (110)
  • Open Access

    REVIEW

    Stochastic Fractal Search: A Decade Comprehensive Review on Its Theory, Variants, and Applications

    Mohammed A. El-Shorbagy1, Anas Bouaouda2,*, Laith Abualigah3,4, Fatma A. Hashim5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2339-2404, 2025, DOI:10.32604/cmes.2025.061028 - 03 March 2025

    Abstract With the rapid advancements in technology and science, optimization theory and algorithms have become increasingly important. A wide range of real-world problems is classified as optimization challenges, and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains, such as machine learning, process control, and engineering design, showcasing their capability to address complex optimization problems. The Stochastic Fractal Search (SFS) algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials. Since its introduction by Hamid Salimi in 2015, SFS has garnered significant attention… More >

  • Open Access

    ARTICLE

    Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics

    Shaobo Deng*, Meiru Xie, Bo Wang, Shuaikun Zhang, Sujie Guan, Min Li

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2723-2751, 2025, DOI:10.32604/cmc.2024.057874 - 17 February 2025

    Abstract In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak… More >

  • Open Access

    ARTICLE

    Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations

    Jiaying Shen1, Donglin Zhu1, Yujia Liu2, Leyi Wang1, Jialing Hu1, Zhaolong Ouyang1, Changjun Zhou1, Taiyong Li3,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 345-369, 2025, DOI:10.32604/cmc.2024.060335 - 03 January 2025

    Abstract The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life. The development of the Internet of Things (IoT) relies on the support of base stations, which provide a solid foundation for achieving a more intelligent way of living. In a specific area, achieving higher signal coverage with fewer base stations has become an urgent problem. Therefore, this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization (EPSO)… More >

  • Open Access

    ARTICLE

    Artificial Circulation System Algorithm: A Novel Bio-Inspired Algorithm

    Nermin Özcan1,2,*, Semih Utku3, Tolga Berber4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 635-663, 2025, DOI:10.32604/cmes.2024.055860 - 17 December 2024

    Abstract Metaheuristics are commonly used in various fields, including real-life problem-solving and engineering applications. The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm (ACSA). The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process. The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions, identified as classical benchmark functions. The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities. Furthermore, the paper evaluates ACSA in comparison to 64 metaheuristic… More >

  • Open Access

    ARTICLE

    Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment

    Shiguang Hu1,2, Le Ru1,2,*, Bo Lu1,2, Zhenhua Wang3, Xiaolin Zhao1,2, Wenfei Wang1,2, Hailong Xi1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1879-1903, 2024, DOI:10.32604/cmc.2024.056110 - 15 October 2024

    Abstract The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances. This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment. It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players, as well as the impact of participants’ manipulative behaviors on the state changes of the players. A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario. Subsequently, the… More >

  • Open Access

    ARTICLE

    DeepSurNet-NSGA II: Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots

    Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*, Arman Ibrayeva1, Zeinel Momynkulov1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 229-249, 2024, DOI:10.32604/cmc.2024.053075 - 15 October 2024

    Abstract This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II (Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II) for solving complex multi-objective optimization problems, with a particular focus on robotic leg-linkage design. The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II, aiming to enhance the efficiency and precision of the optimization process. Through a series of empirical experiments and algorithmic analyses, the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from… More >

  • Open Access

    ARTICLE

    Genome-Wide Discovery and Expression Profiling of the SWEET Sugar Transporter Gene Family in Woodland Strawberry (Fragaria vesca) under Developmental and Stress Conditions: Structural and Evolutionary Analysis

    Shoukai Lin1,3,4,*, Yifan Xiong2, Shichang Xu1,2, Manegdebwaoaga Arthur Fabrice Kabore2, Fan Lin5, Fuxiang Qiu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1485-1502, 2024, DOI:10.32604/phyton.2024.050990 - 30 July 2024

    Abstract The SWEET (sugar will eventually be exported transporter) family proteins are a recently identified class of sugar transporters that are essential for various physiological processes. Although the functions of the SWEET proteins have been identified in a number of species, to date, there have been no reports of the functions of the SWEET genes in woodland strawberries (Fragaria vesca). In this study, we identified 15 genes that were highly homologous to the A. thaliana AtSWEET genes and designated them as FvSWEET1FvSWEET15. We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes. The phylogenetic analysis enabled us… More >

  • Open Access

    ARTICLE

    Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines

    Hongjiang Wang1, Qingze Shen2,*, Qin Dai1, Yingcai Gao2, Jing Gao2, Tian Zhang3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.051757 - 18 July 2024

    Abstract Deep learning has emerged in many practical applications, such as image classification, fault diagnosis, and object detection. More recently, convolutional neural networks (CNNs), representative models of deep learning, have been used to solve fault detection. However, the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error. For this reason, an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection. YOLOv8 is a CNN-backed object detection model. Specifically, to reduce… More >

  • Open Access

    ARTICLE

    A Framework Based on the DAO and NFT in Blockchain for Electronic Document Sharing

    Lin Chen1, Jiaming Zhu1, Yuting Xu1, Huanqin Zheng1, Shen Su1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2373-2395, 2024, DOI:10.32604/cmes.2024.049996 - 08 July 2024

    Abstract In the information age, electronic documents (e-documents) have become a popular alternative to paper documents due to their lower costs, higher dissemination rates, and ease of knowledge sharing. However, digital copyright infringements occur frequently due to the ease of copying, which not only infringes on the rights of creators but also weakens their creative enthusiasm. Therefore, it is crucial to establish an e-document sharing system that enforces copyright protection. However, the existing centralized system has outstanding vulnerabilities, and the plagiarism detection algorithm used cannot fully detect the context, semantics, style, and other factors of the… More >

  • Open Access

    ARTICLE

    Evolutionary Safe Padé Approximation Scheme for Dynamical Study of Nonlinear Cervical Human Papilloma Virus Infection Model

    Javaid Ali1, Armando Ciancio2, Kashif Ali Khan3, Nauman Raza4,5, Haci Mehmet Baskonus6,*, Muhammad Luqman1, Zafar-Ullah Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2275-2296, 2024, DOI:10.32604/cmes.2024.046923 - 08 July 2024

    Abstract This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic (CCE) model. The underlying CCE model lacks a closed-form exact solution. Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties, such as positivity, boundedness, and feasibility. Therefore, the development of structure-preserving semi-analytical approaches is always necessary. This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem. Singularity-free safe Padé rational functions approximate the mathematical More >

Displaying 1-10 on page 1 of 110. Per Page