Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (97)
  • Open Access

    ARTICLE

    A Novel Attack on Complex APUFs Using the Evolutionary Deep Convolutional Neural Network

    Ali Ahmadi Shahrakht1, Parisa Hajirahimi2, Omid Rostami3, Diego Martín4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3059-3081, 2023, DOI:10.32604/iasc.2023.040502

    Abstract As the internet of things (IoT) continues to expand rapidly, the significance of its security concerns has grown in recent years. To address these concerns, physical unclonable functions (PUFs) have emerged as valuable tools for enhancing IoT security. PUFs leverage the inherent randomness found in the embedded hardware of IoT devices. However, it has been shown that some PUFs can be modeled by attackers using machine-learning-based approaches. In this paper, a new deep learning (DL)-based modeling attack is introduced to break the resistance of complex XAPUFs. Because training DL models is a problem that falls under the category of NP-hard… More >

  • Open Access

    ARTICLE

    A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling

    Cuiyu Wang, Xinyu Li, Yiping Gao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1849-1870, 2023, DOI:10.32604/cmes.2023.028098

    Abstract Job shop scheduling (JS) is an important technology for modern manufacturing. Flexible job shop scheduling (FJS) is critical in JS, and it has been widely employed in many industries, including aerospace and energy. FJS enables any machine from a certain set to handle an operation, and this is an NP-hard problem. Furthermore, due to the requirements in real-world cases, multi-objective FJS is increasingly widespread, thus increasing the challenge of solving the FJS problems. As a result, it is necessary to develop a novel method to address this challenge. To achieve this goal, a novel collaborative evolutionary algorithm with two-population based… More >

  • Open Access

    ARTICLE

    Competitive and Cooperative-Based Strength Pareto Evolutionary Algorithm for Green Distributed Heterogeneous Flow Shop Scheduling

    Kuihua Huang1, Rui Li2, Wenyin Gong2,*, Weiwei Bian3, Rui Wang1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2077-2101, 2023, DOI:10.32604/iasc.2023.040215

    Abstract This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem (DHPFSP) with minimizing makespan and total energy consumption (TEC). To solve this NP-hard problem, this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm (CCSPEA) which contains the following features: 1) An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence. 2) A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution. 3) A competitive selection is designed which divides the population into a winner and a loser swarms… More >

  • Open Access

    ARTICLE

    Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms

    Shehab Abdulhabib Alzaeemi1, Kim Gaik Tay1,*, Audrey Huong1, Saratha Sathasivam2, Majid Khan bin Majahar Ali2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1163-1184, 2023, DOI:10.32604/csse.2023.038912

    Abstract Radial Basis Function Neural Network (RBFNN) ensembles have long suffered from non-efficient training, where incorrect parameter settings can be computationally disastrous. This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network (SRBFNN) through the behavior’s integration of satisfiability programming. Inspired by evolutionary algorithms, which can iteratively find the near-optimal solution, different Evolutionary Algorithms (EAs) were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation (SRBFNN-2SAT). The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms, including Genetic Algorithm (GA),… More >

  • Open Access

    ARTICLE

    Design of Evolutionary Algorithm Based Unequal Clustering for Energy Aware Wireless Sensor Networks

    Mohammed Altaf Ahmed1, T. Satyanarayana Murthy2, Fayadh Alenezi3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Yena Kim8, Yunyoung Nam8,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1283-1297, 2023, DOI:10.32604/csse.2023.035786

    Abstract Wireless Sensor Networks (WSN) play a vital role in several real-time applications ranging from military to civilian. Despite the benefits of WSN, energy efficiency becomes a major part of the challenging issue in WSN, which necessitate proper load balancing amongst the clusters and serves a wider monitoring region. The clustering technique for WSN has several benefits: lower delay, higher energy efficiency, and collision avoidance. But clustering protocol has several challenges. In a large-scale network, cluster-based protocols mainly adapt multi-hop routing to save energy, leading to hot spot problems. A hot spot problem becomes a problem where a cluster node nearer… More >

  • Open Access

    ARTICLE

    Selection of Metaheuristic Algorithm to Design Wireless Sensor Network

    Rakhshan Zulfiqar1,2, Tariq Javed1, Zain Anwar Ali2,*, Eman H. Alkhammash3, Myriam Hadjouni4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 985-1000, 2023, DOI:10.32604/iasc.2023.037248

    Abstract The deployment of sensor nodes is an important aspect in mobile wireless sensor networks for increasing network performance. The longevity of the networks is mostly determined by the proportion of energy consumed and the sensor nodes’ access network. The optimal or ideal positioning of sensors improves the portable sensor networks effectiveness. Coverage and energy usage are mostly determined by successful sensor placement strategies. Nature-inspired algorithms are the most effective solution for short sensor lifetime. The primary objective of work is to conduct a comparative analysis of nature-inspired optimization for wireless sensor networks (WSNs’) maximum network coverage. Moreover, it identifies quantity… More >

  • Open Access

    ARTICLE

    Managing Health Treatment by Optimizing Complex Lab-Developed Test Configurations: A Health Informatics Perspective

    Uzma Afzal1, Tariq Mahmood2, Ali Mustafa Qamar3,*, Ayaz H. Khan4,5

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6251-6267, 2023, DOI:10.32604/cmc.2023.037653

    Abstract A complex Laboratory Developed Test (LDT) is a clinical test developed within a single laboratory. It is typically configured from many feature constraints from clinical repositories, which are part of the existing Laboratory Information Management System (LIMS). Although these clinical repositories are automated, support for managing patient information with test results of an LDT is also integrated within the existing LIMS. Still, the support to configure LDTs design needs to be made available even in standard LIMS packages. The manual configuration of LDTs is a complex process and can generate configuration inconsistencies because many constraints between features can remain unsatisfied.… More >

  • Open Access

    ARTICLE

    Biometric Finger Vein Recognition Using Evolutionary Algorithm with Deep Learning

    Mohammad Yamin1,*, Tom Gedeon2, Saleh Bajaba3, Mona M. Abusurrah4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5659-5674, 2023, DOI:10.32604/cmc.2023.034005

    Abstract In recent years, the demand for biometric-based human recognition methods has drastically increased to meet the privacy and security requirements. Palm prints, palm veins, finger veins, fingerprints, hand veins and other anatomic and behavioral features are utilized in the development of different biometric recognition techniques. Amongst the available biometric recognition techniques, Finger Vein Recognition (FVR) is a general technique that analyzes the patterns of finger veins to authenticate the individuals. Deep Learning (DL)-based techniques have gained immense attention in the recent years, since it accomplishes excellent outcomes in various challenging domains such as computer vision, speech detection and Natural Language… More >

  • Open Access

    ARTICLE

    A High-Quality Adaptive Video Reconstruction Optimization Method Based on Compressed Sensing

    Yanjun Zhang1, Yongqiang He2, Jingbo Zhang1, Yaru Zhao3, Zhihua Cui1,*, Wensheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 363-383, 2023, DOI:10.32604/cmes.2023.025832

    Abstract The video compression sensing method based on multi hypothesis has attracted extensive attention in the research of video codec with limited resources. However, the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task. To resolve this problem, this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimization method. It mainly includes the optimization of prediction blocks (OPBS), the selection of search windows and the use of neighborhood information. Specifically, the OPBS consists of two parts: the selection of blocks and the optimization of prediction blocks. We combine the high-quality optimization reconstruction of… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithm Based Feature Subset Selection for Students Academic Performance Analysis

    Ierin Babu1,*, R. MathuSoothana2, S. Kumar2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3621-3636, 2023, DOI:10.32604/iasc.2023.033791

    Abstract Educational Data Mining (EDM) is an emergent discipline that concentrates on the design of self-learning and adaptive approaches. Higher education institutions have started to utilize analytical tools to improve students’ grades and retention. Prediction of students’ performance is a difficult process owing to the massive quantity of educational data. Therefore, Artificial Intelligence (AI) techniques can be used for educational data mining in a big data environment. At the same time, in EDM, the feature selection process becomes necessary in creation of feature subsets. Since the feature selection performance affects the predictive performance of any model, it is important to elaborately… More >

Displaying 11-20 on page 2 of 97. Per Page