Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (110)
  • Open Access

    ARTICLE

    A Data Intrusion Tolerance Model Based on an Improved Evolutionary Game Theory for the Energy Internet

    Song Deng1,*, Yiming Yuan2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3679-3697, 2024, DOI:10.32604/cmc.2024.052008 - 20 June 2024

    Abstract Malicious attacks against data are unavoidable in the interconnected, open and shared Energy Internet (EI), Intrusion tolerant techniques are critical to the data security of EI. Existing intrusion tolerant techniques suffered from problems such as low adaptability, policy lag, and difficulty in determining the degree of tolerance. To address these issues, we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas: 1) it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights; and 2) it combines a tournament competition More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863 - 20 June 2024

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

  • Open Access

    ARTICLE

    Path-Based Clustering Algorithm with High Scalability Using the Combined Behavior of Evolutionary Algorithms

    Leila Safari-Monjeghtapeh1, Mansour Esmaeilpour2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 705-721, 2024, DOI:10.32604/csse.2024.044892 - 20 May 2024

    Abstract Path-based clustering algorithms typically generate clusters by optimizing a benchmark function. Most optimization methods in clustering algorithms often offer solutions close to the general optimal value. This study achieves the global optimum value for the criterion function in a shorter time using the minimax distance, Maximum Spanning Tree “MST”, and meta-heuristic algorithms, including Genetic Algorithm “GA” and Particle Swarm Optimization “PSO”. The Fast Path-based Clustering “FPC” algorithm proposed in this paper can find cluster centers correctly in most datasets and quickly perform clustering operations. The FPC does this operation using MST, the minimax distance, and… More >

  • Open Access

    ARTICLE

    A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation

    Fangzhen Ge1,3, Yating Wu1,*, Debao Chen2,4, Longfeng Shen1,5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 189-211, 2024, DOI:10.32604/iasc.2024.042841 - 21 May 2024

    Abstract It is still a huge challenge for traditional Pareto-dominated many-objective optimization algorithms to solve many-objective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front, resulting in poor performance of those algorithms. For this reason, we propose a reference vector-assisted algorithm with an adaptive niche dominance relation, for short MaOEA-AR. The new dominance relation forms a niche based on the angle between candidate solutions. By comparing these solutions, the solution with the best convergence is More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier

    Jun Wang1,2, Linxi Zhang1,2, Hao Zhang1, Funan Peng1,*, Mohammed A. El-Meligy3, Mohamed Sharaf3, Qiang Fu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1281-1299, 2024, DOI:10.32604/cmc.2024.048495 - 25 April 2024

    Abstract The existing algorithms for solving multi-objective optimization problems fall into three main categories: Decomposition-based, dominance-based, and indicator-based. Traditional multi-objective optimization problems mainly focus on objectives, treating decision variables as a total variable to solve the problem without considering the critical role of decision variables in objective optimization. As seen, a variety of decision variable grouping algorithms have been proposed. However, these algorithms are relatively broad for the changes of most decision variables in the evolution process and are time-consuming in the process of finding the Pareto frontier. To solve these problems, a multi-objective optimization algorithm… More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146 - 25 April 2024

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing

    Shasha Zhao1,2,3,*, Huanwen Yan1,2, Qifeng Lin1,2, Xiangnan Feng1,2, He Chen1,2, Dengyin Zhang1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1135-1156, 2024, DOI:10.32604/cmc.2024.045660 - 30 January 2024

    Abstract Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment. Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios. In this work, the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm (HPSO-EABC) has been proposed, which hybrids our presented Evolutionary Artificial Bee Colony (EABC), and Hierarchical Particle Swarm Optimization (HPSO) algorithm. The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm. Comprehensive testing including evaluations of algorithm convergence speed,… More >

  • Open Access

    ARTICLE

    IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations

    Yajing Ma1,2,3, Gulila Altenbek1,2,3,*, Yingxia Yu1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 695-712, 2024, DOI:10.32604/cmc.2023.045486 - 30 January 2024

    Abstract Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events, we propose an Independent Recurrent Temporal Graph Convolution Networks (IndRT-GCNets) framework to efficiently and accurately capture event attribute information. The framework models the knowledge graph sequences to learn the evolutionary representations of entities and relations within each period. Firstly, by utilizing the temporal graph convolution module in the evolutionary representation unit, the framework captures the structural dependency relationships within the knowledge graph in each period. Meanwhile, to achieve better event… More >

  • Open Access

    ARTICLE

    A Multi-Objective Genetic Algorithm Based Load Balancing Strategy for Health Monitoring Systems in Fog-Cloud

    Hayder Makki Shakir, Jaber Karimpour*, Jafar Razmara

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 35-55, 2024, DOI:10.32604/csse.2023.038545 - 26 January 2024

    Abstract As the volume of data and data-generating equipment in healthcare settings grows, so do issues like latency and inefficient processing inside health monitoring systems. The Internet of Things (IoT) has been used to create a wide variety of health monitoring systems. Most modern health monitoring solutions are based on cloud computing. However, large-scale deployment of latency-sensitive healthcare applications is hampered by the cloud’s design, which introduces significant delays during the processing of vast data volumes. By strategically positioning servers close to end users, fog computing mitigates latency issues and dramatically improves scaling on demand, resource… More >

  • Open Access

    ARTICLE

    User Purchase Intention Prediction Based on Improved Deep Forest

    Yifan Zhang1, Qiancheng Yu1,2,*, Lisi Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 661-677, 2024, DOI:10.32604/cmes.2023.044255 - 30 December 2023

    Abstract Widely used deep neural networks currently face limitations in achieving optimal performance for purchase intention prediction due to constraints on data volume and hyperparameter selection. To address this issue, based on the deep forest algorithm and further integrating evolutionary ensemble learning methods, this paper proposes a novel Deep Adaptive Evolutionary Ensemble (DAEE) model. This model introduces model diversity into the cascade layer, allowing it to adaptively adjust its structure to accommodate complex and evolving purchasing behavior patterns. Moreover, this paper optimizes the methods of obtaining feature vectors, enhancement vectors, and prediction results within the deep More >

Displaying 11-20 on page 2 of 110. Per Page