Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ARTICLE

    An Experimental Study Of An Electroaerodynamic Actuator

    R. Mestiri1, R.Hadaji1, S. Ben Nasrallah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 409-418, 2010, DOI:10.3970/fdmp.2010.006.409

    Abstract The electroaerodynamic actuator or plasma actuator uses the characteristics of the non-thermal surface plasmas. These plasmas are created in atmospheric pressure by a DC electrical corona discharge at the surface of a dielectric material. The two electrodes are two conductive parallel wires. The applied voltage is of several kilovolts. The corona discharge creates a tangential electric wind that can modify the boundary layer flow properties. In this paper, we present the results found for two geometric configurations: the flat plate and the cylinder. In order to study the discharge specificity, we have found the current- voltage characteristics for different inter-electrode… More >

  • Open Access

    ARTICLE

    Electromagnetic DC Pump of Liquid Aluminium: Computer Simulation and Experimental Study

    Nedeltcho K,ev1, Val Kagan2, Ahmed Daoud1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 291-318, 2010, DOI:10.3970/fdmp.2010.006.291

    Abstract Results are presented of 3D numerical magneto-hydrodynamic (MHD) simulation of electromagnetic DC pump for both laminar and turbulent metal flow under an externally imposed strongly non-uniform magnetic field. Numerous MHD flow cases were simulated using finite element method and the results of five typical examples are summarized here, including one example of laminar brake flow, one example of turbulent brake flow and three examples of turbulent pumping conditions. These simulations of laminar and turbulent channel flow of liquid metal correctly represent the formation of an M shaped velocity profile and are in good agreement with the results of recently published… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Forced Mixing with Static Magnetic Field on SiGe System

    N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 331-344, 2009, DOI:10.3970/fdmp.2009.005.331

    Abstract A combined numerical and experimental investigation has been undertaken to explore the benefits of an applied static magnetic field on Silicon transport into a Germanium melt. This work utilized a similar material configuration to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) growth systems. The measured concentration profiles from the samples processed with and without the application of magnetic field showed very similar shape. The amount of silicon transport into the melt is slightly higher in the samples processed under magnetic field, and there is a substantial difference in dissolution interface shape indicating a change in… More >

  • Open Access

    ARTICLE

    On the Behavior of an Interface under Molecular Diffusion: A Theoretical Prediction and Experimental Study

    R. Abdeljabar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 193-210, 2009, DOI:10.3970/fdmp.2009.005.193

    Abstract A theoretical model has been developed to predict the expansion of a salty gradient (i.e. the interface) layer under natural diffusion. The salty gradient layer is initially sandwiched between two homogeneous miscible layers of varying salinity, which may or may not have the same thickness. The model describes the concentration profile of the salty gradient layer (expressed by analytical solutions of the diffusion equation) as the boundaries of this interfacial layer move into the adjacent (hitherto homogeneous) regions. The lifetime of the adjacent layers is also predicted. An experimental study for a configuration with salty water below and distilled water… More >

  • Open Access

    ARTICLE

    An Experimental Study on Enhancing Cooling Rates of Low Thermal Conductivity Fluids Using Liquid Metals

    S.-A. B. Al Omari1,2, E. Elnajjar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 91-109, 2013, DOI:10.3970/fdmp.2013.009.091

    Abstract In a previous numerical study (Al Omari, Int. Communication in Heat and Mass Transfer, 2011) the heat transfer enhancement between two immiscible liquids with clear disparity in thermal conductivity such as water and a liquid metal (attained by co- flowing them in a direct contact manner alongside each other in mini channel) was demonstrated. The present work includes preliminary experimental results that support those numerical findings. Two immiscible liquids (hot water and liquid gallium) are allowed experimentally to exchange heat (under noflow conditions) in a stationary metallic cup where they are put in direct contact. The experimental results confirm the… More >

  • Open Access

    ARTICLE

    An Experimental Study on Drying of Pistacia Terebinthus in a Fixed Bed Dryer

    A. Balbay1, H. Ülker2, Ö. Şahin3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 1-10, 2013, DOI:10.3970/fdmp.2013.009.001

    Abstract In this study, drying behaviours of the outer shell peeled Bittim (Pistacia terebinthus) with initial moisture content of 42.2% (dry basis (d.b)) was investigated in a novel fixed bed drying system. The drying experiments were performed at different temperatures (40 °C, 60 °C and 80 °C), air velocities (0.5 m/s and 1 m/s) and weights (30 g and 40 g). A constant rate period was not observed in the drying of bittims; all the drying process occurred in falling rate period. Three models in literature were selected to fit the experimental data. The fit quality of models was evaluated using… More >

  • Open Access

    ARTICLE

    An Experimental Study of Two-Phase Flow in Porous Media with Measurement of Relative Permeability

    N. Labed1, L. Bennamoun2, J.P. Fohr3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 423-436, 2012, DOI:10.3970/fdmp.2012.008.423

    Abstract Intrinsic and relative permeability are indispensable parameters for performing transfers in porous media. In this paper, the conception and ensuing exploitation of a new testing ground for measuring the relative permeability of water and nitrogen are presented. The experimental work was elaborated in the Laboratory of Thermal Studies in Poitiers, (France) where brick samples were used to verify the performance of the proposed testing strategy. The results prove the existence of several stages during the drainage and the imbibitions. In particular, the three stages observed for the case of gas permeability reduce to only two steps for liquid permeability. Comparison… More >

  • Open Access

    ARTICLE

    Numerical and Experimental Study of Particle Motion in Plasma Arc Welding

    Adeline Tchikango Siagam1, Gunther Brenner1, Peter Giese2, Volker Wesling2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 77-84, 2008, DOI:10.3970/fdmp.2008.004.077

    Abstract The PTA (''Plasma-Transferred-Arc'') is a widespread variant of plasma powder processes to manufacture coatings against corrosion or abrasion. For the optimization of this technique, an explanation of the processes which lead to a maximal deposition performance (i.e. maximal quantity of powder converted per time) is required. Especially the gas and particle flow in the region between the burner nozzle and the work piece is of interest. In the present study, flow simulations (Computational Fluid Dynamics, CFD) have been done in order to investigate the determining factors for the dimensioning of the processes. Additionally, velocity measurements have been obtained with PIV… More >

Displaying 101-110 on page 11 of 108. Per Page