Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ABSTRACT

    An Experimental Study on Properties of High-Volume Slag and Fly Ash Cements Incorporating Calcined Oyster Shells Waste

    Ali Naqi, Jeong Gook Jang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 5-5, 2019, DOI:10.32604/icces.2019.05299

    Abstract Concrete construction industry is facing a sustainability issue for a variety of reasons. First, it consumes enormous amounts of natural resources. Second, the primary content in the binder of concrete is Portland cement, which production is one of the major sources of greenhouse gas emissions leading to global warming. Third, durability concerns of concrete structures. To overcome these issues cement is substituted with high volumes of more sustainable cementitious materials such as slag and fly ash. Slag is a by-product of an iron blast furnace while fly ash is a by-product of coal-fired power plants. Both these supplementary cementitious materials… More >

  • Open Access

    ARTICLE

    Experimental Study and Finite Element Analysis on Ultimate Strength of Dual-Angle Cross Combined Section Under Compression

    Hao Hu1,2, Jian He1,*, Lian Song1, Zhifeng Zhan1, Zhengliang Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 499-539, 2019, DOI:10.32604/cmes.2019.06266

    Abstract This paper investigates Q420 dual-angle cross combined section columns under axial and eccentric compression by conducting experiments. The specimen parameters, experimental setup, and test results are presented. It showed that local buckling occurred apparently for single internode specimens (λ<35) under axial compression, while overall bending buckling appeared for others, and no torsional buckling occurred. The theoretical formulas on stability factor were derived by the energy approach. Non-linear finite element models considering residual stress were established using ANSYS which were verified by the corresponding experimental results. The parametric study was to evaluate the effects of slenderness ratio (λ), width to thickness… More >

  • Open Access

    ARTICLE

    Flexural Property of String Beam of Pre-Stressed Glulam Based on Influence of Regulation and Control

    Nan Guo1,*, Wenbo Wang1, Hongliang Zuo1

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 143-179, 2019, DOI:10.32604/sdhm.2019.04640

    Abstract Applying pre-stress in glulam beam can reduce its deformation and make full use of the compressive strength of wood. However, when the glulam with low strength and the pre-stressed steel with high strength form combined members, materials of high strength can’t be fully utilized. Therefore, this study puts forward the idea of regulating and controlling string beam of pre-stressed glulam. By regulating and controlling the pre-stress, a part of the load borne by the wood is allocated to the pre-stressed tendon, which is equivalent to completing a redistribution of internal force, thus realizing the repeated utilization of the wood strength… More >

  • Open Access

    ARTICLE

    Experimental Study of Aqueous Humor Flow in a Transparent Anterior Segment Phantom by Using PIV Technique

    Wenjia Wang1, 2, Xiuqing Qian1, 2, Qi Li1, 2, Gong Zhang1, 2, Huangxuan Zhao1, 2, Tan Li1, 2, Yang Yu1, 2, Hongfang Song1, 2, *, Zhicheng Liu1, 2, *

    Molecular & Cellular Biomechanics, Vol.16, No.1, pp. 59-74, 2019, DOI:10.32604/mcb.2019.06393

    Abstract Pupillary block is considered as an important cause of primary angle-closure glaucoma (PACG). In order to investigate the effect of pupillary block on the hydrodynamics of aqueous humor (AH) in anterior chamber (AC) and potential risks, a 3D printed eye model was developed to mimic the AH flow driven by fluid generation, the differential pressure between AC and posterior chambers (PC) and pupillary block. Particle image velocimetry technology was applied to visualize flow distribution. The results demonstrated obvious differences in AH flow with and without pupillary block. Under the normal condition (without pupillary block), the flow filed of AH was… More >

  • Open Access

    ARTICLE

    Impact of Coronary Tortuosity on Coronary Pressure and Wall Shear Stress: an Experimental Study

    Yang Li1, Xiuxian Liu2, Zhiyong Li2,*, Jiayi Tong1, Yi Feng1, Genshan Ma1, Chengxing Shen3, Naifeng Liu1

    Molecular & Cellular Biomechanics, Vol.14, No.4, pp. 213-229, 2017, DOI:10.3970/mcb.2017.014.213

    Abstract Coronary tortuosity is a common angiographic finding, but the hemodynamic significance of coronary tortuosity is largely unknown. The impact of coronary tortuosity on coronary pressure and wall shear stress is still unclear. We addressed this issue in the present experimental study. A distorted tube model connected to heart pumping machine was established to simulate the coronary circulation. The pressure of each point was measured with a coronary pressure guidewire. Influence of tortuosity angle and tortuosity number on local pressure was measured. Wall shear stress was calculated accordingly to the pressure of each point. Pressure distribution in this system was affected… More >

  • Open Access

    ARTICLE

    Experimental Study and Simulation on Compression Character of Warp Knitted Spacer Fabrics

    Jing Qian1, Xuhong Miao2, Yao Shen3

    CMC-Computers, Materials & Continua, Vol.27, No.2, pp. 179-188, 2012, DOI:10.32604/cmc.2012.027.179

    Abstract Based on experimental data, the research work on warp knitted spacer fabrics gives compression laws when structural parameters (such as diameter of spacer yarn, areal density, spacer yarn angle and the thickness of spacer fabrics ) of spacer fabric change. ANSYS calculation models were developed, and simulation results matched with experimental data well. The computer simulation on this area provides a fundamental tool which can help designer to decide structural parameters when working stresses are given. More >

  • Open Access

    ARTICLE

    Experimental Study on Mechanical Properties Degradation of TP110TS Tube Steel in High H2S Corrosive Environment

    Deli Gao1, Zengxin Zhao2

    CMC-Computers, Materials & Continua, Vol.26, No.2, pp. 157-166, 2011, DOI:10.3970/cmc.2011.026.157

    Abstract The research on casing corrosion in sour environment by a synergism of sweet corrosion and H2S corrosion has become the basis of casing selection and casing string safety evaluation with more and more sour reservoirs containing high H2S concentration being developed. It is essential to scientifically utilize casing service ability and reasonably control production rate of gas well to achieve the effective and safe developing of gas resources during the safety period of casing service with a precise casing life prediction. Scanning electron microscopy and tensile testing were applied to investigate the corrosion of TP110TS tube steel in stimulant solution… More >

  • Open Access

    ARTICLE

    Consolidation of a Soft Clay Composite: Experimental Results and Computational Estimates

    A.P.S. Selvadurai1, H. Ghiabi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.1, pp. 53-74, 2008, DOI:10.3970/cmes.2008.023.053

    Abstract This paper deals with the problem of the consolidation of a composite consisting of alternate layers of soft clay and a granular material. A series of experiments were conducted on components to develop the constitutive models that can be implemented in a computational approach. The constitutive response of the soft clay is represented by a poro-elasto-plastic Cam clay-based model and the granular medium by an elasto-plastic model with a Drucker-Prager type failure criterion and a non-associated flow rule. The computational poro-elasto-plastic model is used to calibrate the experimental results derived from the one-dimensional tests and to establish the influence of… More >

  • Open Access

    ARTICLE

    Experimental study of interfacial phenomena between the heavy oil and maximum solvent concentration as function of injection pressures

    Hameed Muhamad1, Simant Upreti 2, Ali Lohi3, Huu Doan4

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.3, pp. 111-123, 2016, DOI:10.3970/fdmp.2016.012.111

    Abstract Heavy Oil is an up and coming energy resource that is aggressively being sought after as the world’s energy demand increases. As technology continues to improve, this once costly energy source is quickly becoming a more viable alternative. Vapor extraction (Vapex) process is an emerging technology for viscous oil recovery that has gained much attention in the oil industry. The vapor extraction of heavy oil system is presented to describe experimental setups and procedures used to perform different experiments of vape extraction process. The generated experimental data were used to calculate the live oil maximum interfacial solvent concentration as function… More >

  • Open Access

    ARTICLE

    A Experimental Study on the Rhelogical and Mechanical Properties of Blends of Polyethylene and Modified Oil Shale Ash (MOSA)

    Y.H. Liu1, X.X. Xue2, J.M.Shen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 197-204, 2015, DOI:10.3970/fdmp.2015.011.195

    Abstract Blends of Polyethylene (PE) and modified-oil shale ash (MOSA) with different fractions of MOSA were prepared by the melting blend method. The effects of MOSA content on the rheological and mechanical properties of the blend were properly assessed via direct experimental analysis (more precisely, all rheological measurements were performed using a laboratory-scale XSS-300 torque rheometer with single screw extruder; the temperatures were maintained at 170°C, 180°C and 190°C under continuous extrusion). The prepared samples were observed to display a shear-thinning behaviour. Moreover, with increasing the MOSA content, we found the yield strength of the blends to increase, while its elongation… More >

Displaying 91-100 on page 10 of 108. Per Page