Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    PROCEEDINGS

    Experimental Study of the Electrical Resistance of Graphene OxideReinforced Cement-Based Composites with Notch or Rebar

    Yangao Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09773

    Abstract This paper investigates the effects of graphene oxide (GO), notch depth, rebar, and load on the resistivity of cement paste and mortar. The electrical conductivity of GO/cement composite reaches its maximum value when the GO content is 0.03%, which is approximately 50% higher compared to the composite without GO. The resistivity of GO/cement composite shows significant changes with increasing load from 0 to 40 kN. The gauge factor for compressive loading varies from about 26 to 73 for different GO contents. Moreover, the resistivity variation with the notch depth in GO/cement is found to be More >

  • Open Access

    ARTICLE

    Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources

    Tianyu Zhou1, Liang Hao1, Xin Xu2,3, Meng Si2,3, Lian Zhang2,3,*

    Energy Engineering, Vol.121, No.1, pp. 145-168, 2024, DOI:10.32604/ee.2023.042798

    Abstract This paper discussed the experimental results of the performance of an organic Rankine cycle (ORC) system with an ultra-low temperature heat source. The low boiling point working medium R134a was adopted in the system. The simulated heat source temperature (SHST) in this work was set from 39.51°C to 48.60°C by the simulated heat source module. The influence of load percentage of simulated heat source (LPSHS) between 50% and 70%, the rotary valve opening (RVO) between 20% and 100%, the resistive load between 36 Ω and 180 Ω or the no-load of the generator, as well… More >

  • Open Access

    ARTICLE

    AN EXPERIMENTAL STUDY OF THE EFFECT OF PRESSURE INLET GAS ON A COUNTER-FLOW VORTEX TUBE

    Mahyar Kargaran*, Mahmood Farzaneh-Gord

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-6, 2013, DOI:10.5098/hmt.v4.1.3007

    Abstract Vortex tube is a simple device which separate an inlet gas with a proper pressure into hot and cold flows .This device is well-suited for generating cooling load gas because it provides the cold gas without using any refrigerants . Many research works has been carried out in order to identify the factors which contribute to Vortex tube performance. Here, an experimental study has been made to determine the effect of geometrical (length of vortex tube) and thermo-physical (pressure) parameters on vortex tube performance and air also used as a working fluid. More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF COEFFICIENT OF THERMAL EXPANSION OF ALIGNED GRAPHITE THERMAL INTERFACE MATERIALS

    Hsiu-Hung Chena , Yuan Zhaob, Chung-Lung Chena,*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-7, 2013, DOI:10.5098/hmt.v4.1.3004

    Abstract Carbon-based materials draw more and more attention from both academia and industry: its allotropes, including graphene nanoplatlets, graphite nanoplatlets and carbon nanotubes, can readily enhance thermal conductivity of thermal interface products when served as fillers. Structuraloptimization in micro/nano-scale has been investigated and expected to finely tune the coefficient of thermal expansion (CTE) of thermal interface materials (TIMs). The capability of adjusting CTE of materials greatly benefits the design of interface materials as CTE mismatch between materials may result in serious fatigue at the interface region that goes through thermal cycles. Recently, a novel nano-thermal-interface material… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF THE INTENSIFICATION OF HEAT TRANSFER BY POOL BOILING LN2: APPLICATION TO COOLING OF A BRASS RIBBON IN HORIZONTAL POSITION

    A. Zoubira , R. Agounouna,*, I. Kadirib, K. Sbaia , M. Rahmounea

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.35

    Abstract Boiling heat transfer process is important because it is a way to increase the flux density transmitted at low temperature differences. To quantify the thermal exchanges, we performed an experimental study of the nitrogen pool boiling, in transient conditions, on a horizontal brass ribbon for a fixed flux density. The results show that there is no break between the monophasic convection zone and the nucleated boiling region. In the nucleated boiling zone, the temperature variations are very small. We also note that the overheating required to trigger boiling increases with the time delay after the More >

  • Open Access

    ARTICLE

    Experimental Study on Gas Flow Uniformity in a Diesel Particulate Filter Carrier

    Zhengyong Wang1, Jianhua Zhang2, Guoliang Su3, Peixing Yang4, Xiantao Fan4, Shuzhan Bai1, Ke Sun1,*, Guihua Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 193-204, 2024, DOI:10.32604/fdmp.2023.030561

    Abstract A Diesel Particulate Filter (DPF) is a critical device for diesel engine exhaust products treatment. When using active-regeneration purification methods, on the one hand, a spatially irregular gas flow can produce relatively high local temperatures, potentially resulting in damage to the carrier; On the other hand, the internal temperature field can also undergo significant changes contributing to increase this risk. This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle (DTI) condition by means of bench tests. It is shown that the considered silicon carbide carrier exhibits… More >

  • Open Access

    ARTICLE

    Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques

    Liang Wen1,2,*, Changhong Yan3, Yehui Shi4, Zhenxiang Wang4, Gang Liu4, Wei Shi4

    Journal of Renewable Materials, Vol.11, No.10, pp. 3681-3692, 2023, DOI:10.32604/jrm.2023.027671

    Abstract The treatment of wheat straw is very difficult, and its utilization rate is very low; accumulation causes air pollution and even fire. To make full use of wheat straw resources, we examined how using different physical and chemical methods to treat the wheat straw which can improve its strength abilities, or enhance the activity of wheat straw ash. In terms of concrete additives, it can reduce the amount of cement used. In this paper, we found that alkali treatment can significantly improve the tensile strength of wheat straw fiber, but polyvinyl alcohol treatment has no… More > Graphic Abstract

    Experimental Study on the Compressive Strength of Concrete with Different Wheat Straw Treatment Techniques

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY ON WATER CURTAIN FIGHTING FIRE BASED ON INFRARED TECHNIQUE

    Hui Zhong, Guohua Chen* , Saihua Jiang

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-5, 2017, DOI:10.5098/hmt.8.17

    Abstract Infrared radiation is a type of electromagnetic radiation and invisible to human eyes. It is used widely in industrial, scientific, and medical applications. Pool fire is an emergent accident, which emits intense thermal radiation. In order to quantify the performance of water curtain fighting fire, a testing platform is built and experimental studies are carried out. An infrared imager is used to acquire real-time experimental data and respond to the variations of flame in time and space dimensions. Experimental principles and operating procedures are described in detail. The transmissivity is used to quantify the performance More >

  • Open Access

    ARTICLE

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

    Tiezhu Sun*, Huan Sun, Tingzheng Tang, Yongcheng Yan, Peixuan Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2519-2531, 2023, DOI:10.32604/fdmp.2023.027118

    Abstract The so-called indirect evaporative cooling technology is widely used in air conditioning applications. The thermal characterization of tube-type indirect evaporative coolers, however, still presents challenges which need to be addressed to make this technology more reliable and easy to implement. This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter. In particular, the required tests were carried out considering a range of dry-bulb temperatures between 16°C and 18°C and a temperature difference between the wet-bulb and dry-bulb temperature of 2°C∼4°C. The integrated convective More > Graphic Abstract

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

  • Open Access

    ARTICLE

    Experimental Study on the Influence of Fracturing Fluid Retention on Shale Gas Diffusion Law

    Zhiyuan Yao1,2,3, Jing Sun1,2,3,*, Dehua Liu1,2,3

    Energy Engineering, Vol.120, No.8, pp. 1853-1866, 2023, DOI:10.32604/ee.2023.025846

    Abstract Shale gas reservoirs have poor physical properties and a large number of micro-nano pores have been developed. Shale gas wells have no natural productivity and need fracturing reconstruction measures to put into production. However, the fracturing fluid will enter the reservoir space of shale matrix after fracturing and affect the production of shale gas. At present, there is no consensus on the influence of fracturing fluid retention on gas well production. Based on this, the paper adopts gas molecular transport analyzer to carry out experimental research on the influence of fracturing fluid on shale gas… More >

Displaying 11-20 on page 2 of 113. Per Page