Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (226)
  • Open Access

    ARTICLE

    Industrial EdgeSign: NAS-Optimized Real-Time Hand Gesture Recognition for Operator Communication in Smart Factories

    Meixi Chu1, Xinyu Jiang1,*, Yushu Tao2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071533 - 09 December 2025

    Abstract Industrial operators need reliable communication in high-noise, safety-critical environments where speech or touch input is often impractical. Existing gesture systems either miss real-time deadlines on resource-constrained hardware or lose accuracy under occlusion, vibration, and lighting changes. We introduce Industrial EdgeSign, a dual-path framework that combines hardware-aware neural architecture search (NAS) with large multimodal model (LMM) guided semantics to deliver robust, low-latency gesture recognition on edge devices. The searched model uses a truncated ResNet50 front end, a dimensional-reduction network that preserves spatiotemporal structure for tubelet-based attention, and localized Transformer layers tuned for on-device inference. To reduce… More >

  • Open Access

    ARTICLE

    Lightweight Airborne Vision Abnormal Behavior Detection Algorithm Based on Dual-Path Feature Optimization

    Baixuan Han1, Yueping Peng1,*, Zecong Ye2, Hexiang Hao1, Xuekai Zhang1, Wei Tang1, Wenchao Kang1, Qilong Li1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.071071 - 09 December 2025

    Abstract Aiming at the problem of imbalance between detection accuracy and algorithm model lightweight in UAV aerial image target detection algorithm, a lightweight multi-category abnormal behavior detection algorithm based on improved YOLOv11n is designed. By integrating multi-head grouped self-attention mechanism and Partial-Conv, a two-way feature grouping fusion module (DFPF) was designed, which carried out effective channel segmentation and fusion strategies to reduce redundant calculations and memory access. C3K2 module was improved, and then unstructured pruning and feature distillation technology were used. The algorithm model is lightweight, and the feature extraction ability for airborne visual abnormal behavior… More >

  • Open Access

    ARTICLE

    Pavement Crack Detection Based on Star-YOLO11

    Jiang Mi1, Zhijian Gan1, Pengliu Tan2,*, Xin Chang2, Zhi Wang2, Haisheng Xie2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.069348 - 10 November 2025

    Abstract In response to the challenges in highway pavement distress detection, such as multiple defect categories, difficulties in feature extraction for different damage types, and slow identification speeds, this paper proposes an enhanced pavement crack detection model named Star-YOLO11. This improved algorithm modifies the YOLO11 architecture by substituting the original C3k2 backbone network with a Star-s50 feature extraction network. The enhanced structure adjusts the number of stacked layers in the StarBlock module to optimize detection accuracy and improve model efficiency. To enhance the accuracy of pavement crack detection and improve model efficiency, three key modifications to… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets

    Kwok Tai Chui1,*, Varsha Arya1, Brij B. Gupta2,3,4,*, Miguel Torres-Ruiz5, Razaz Waheeb Attar6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.068842 - 10 November 2025

    Abstract Parkinson’s disease (PD) is a debilitating neurological disorder affecting over 10 million people worldwide. PD classification models using voice signals as input are common in the literature. It is believed that using deep learning algorithms further enhances performance; nevertheless, it is challenging due to the nature of small-scale and imbalanced PD datasets. This paper proposed a convolutional neural network-based deep support vector machine (CNN-DSVM) to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets. A customized kernel function reduces the impact… More >

  • Open Access

    ARTICLE

    Efficient Time-Series Feature Extraction and Ensemble Learning for Appliance Categorization Using Smart Meter Data

    Ugur Madran, Saeed Mian Qaisar*, Duygu Soyoglu

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1969-1992, 2025, DOI:10.32604/cmes.2025.072024 - 26 November 2025

    Abstract Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids. It offers substantial benefits across social, environmental, and economic dimensions. To effectively realize these advantages, a fine-grained collection and analysis of smart meter data is essential. However, the high dimensionality and volume of such time-series present significant challenges, including increased computational load, data transmission overhead, latency, and complexity in real-time analysis. This study proposes a novel, computationally efficient framework for feature extraction and selection tailored to smart meter time-series data. The approach begins with an extensive offline analysis, where features are… More >

  • Open Access

    ARTICLE

    Segmentation of Building Surface Cracks by Incorporating Attention Mechanism and Dilation-Wise Residual

    Yating Xu1, Mansheng Xiao1,*, Mengxing Gao1, Zhenzhen Liu1, Zeyu Xiao2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1635-1656, 2025, DOI:10.32604/sdhm.2025.068822 - 17 November 2025

    Abstract During the operation, maintenance and upkeep of concrete buildings, surface cracks are often regarded as important warning signs of potential damage. Their precise segmentation plays a key role in assessing the health of a building. Traditional manual inspection is subjective, inefficient and has safety hazards. In contrast, current mainstream computer vision–based crack segmentation methods still suffer from missed detections, false detections, and segmentation discontinuities. These problems are particularly evident when dealing with small cracks, complex backgrounds, and blurred boundaries. For this reason, this paper proposes a lightweight building surface crack segmentation method, HL-YOLO, based on… More >

  • Open Access

    ARTICLE

    Systematic Analysis of Latent Fingerprint Patterns through Fractionally Optimized CNN Model for Interpretable Multi-Output Identification

    Mubeen Sabir1, Zeshan Aslam Khan2,*, Muhammad Waqar2, Khizer Mehmood1, Muhammad Junaid Ali Asif Raja3, Naveed Ishtiaq Chaudhary4, Khalid Mehmood Cheema5, Muhammad Asif Zahoor Raja4, Muhammad Farhan Khan6, Syed Sohail Ahmed7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 807-855, 2025, DOI:10.32604/cmes.2025.068131 - 30 October 2025

    Abstract Fingerprint classification is a biometric method for crime prevention. For the successful completion of various tasks, such as official attendance, banking transactions, and membership requirements, fingerprint classification methods require improvement in terms of accuracy, speed, and the interpretability of non-linear demographic features. Researchers have introduced several CNN-based fingerprint classification models with improved accuracy, but these models often lack effective feature extraction mechanisms and complex multineural architectures. In addition, existing literature primarily focuses on gender classification rather than accurately, efficiently, and confidently classifying hands and fingers through the interpretability of prominent features. This research seeks to… More >

  • Open Access

    ARTICLE

    ELM-APDPs: An Explainable Ensemble Learning Method for Accurate Prediction of Druggable Proteins

    Mujeebu Rehman1, Qinghua Liu1, Ali Ghulam2, Tariq Ahmad3, Jawad Khan4,*, Dildar Hussain5,*, Yeong Hyeon Gu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 779-805, 2025, DOI:10.32604/cmes.2025.067412 - 30 October 2025

    Abstract Identifying druggable proteins, which are capable of binding therapeutic compounds, remains a critical and resource-intensive challenge in drug discovery. To address this, we propose CEL-IDP (Comparison of Ensemble Learning Methods for Identification of Druggable Proteins), a computational framework combining three feature extraction methods Dipeptide Deviation from Expected Mean (DDE), Enhanced Amino Acid Composition (EAAC), and Enhanced Grouped Amino Acid Composition (EGAAC) with ensemble learning strategies (Bagging, Boosting, Stacking) to classify druggable proteins from sequence data. DDE captures dipeptide frequency deviations, EAAC encodes positional amino acid information, and EGAAC groups residues by physicochemical properties to generate… More >

  • Open Access

    ARTICLE

    A Lightweight Multimodal Deep Fusion Network for Face Antis Poofing with Cross-Axial Attention and Deep Reinforcement Learning Technique

    Diyar Wirya Omar Ameenulhakeem*, Osman Nuri Uçan

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5671-5702, 2025, DOI:10.32604/cmc.2025.070422 - 23 October 2025

    Abstract Face antispoofing has received a lot of attention because it plays a role in strengthening the security of face recognition systems. Face recognition is commonly used for authentication in surveillance applications. However, attackers try to compromise these systems by using spoofing techniques such as using photos or videos of users to gain access to services or information. Many existing methods for face spoofing face difficulties when dealing with new scenarios, especially when there are variations in background, lighting, and other environmental factors. Recent advancements in deep learning with multi-modality methods have shown their effectiveness in… More >

  • Open Access

    ARTICLE

    RPMS-DSAUnet: A Segmentation Model for the Pancreas in Abdominal CT Images

    Tiren Huang, Chong Luo, Xu Li*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5847-5865, 2025, DOI:10.32604/cmc.2025.067986 - 23 October 2025

    Abstract Automatic pancreas segmentation in CT scans is crucial for various medical applications including early disease detection, treatment planning and therapeutic evaluation. However, the pancreas’s small size, irregular morphology, and low contrast with surrounding tissues make accurate pancreas segmentation still a challenging task. To address these challenges, we propose a novel RPMS-DSAUnet for accurate automatic pancreas segmentation in abdominal CT images. First, a Residual Pyramid Squeeze Attention module enabling hierarchical multi-resolution feature extraction with dynamic feature weighting and selective feature reinforcement capabilities is integrated into the backbone network, enhancing pancreatic feature extraction and improving localization accuracy.… More >

Displaying 1-10 on page 1 of 226. Per Page