Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (92)
  • Open Access

    ARTICLE

    Optimization and Sensitivity Analysis of Non-Isothermal Carreau Fluid Flow in Roll Coating Systems with Fixed Boundary Constraints: A Comparative Investigation

    Mujahid Islam1, Fateh Ali1,*, Xinlong Feng1,*, M. Zahid2, Sana Naz Maqbool1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3511-3561, 2025, DOI:10.32604/cmes.2025.073678 - 23 December 2025

    Abstract Roll coating is a vital industrial process used in printing, packaging, and polymer film production, where maintaining a uniform coating is critical for product quality and efficiency. This work models non-isothermal Carreau fluid flow between a rotating roll and a stationary wall under fixed boundary constraints to evaluate how non-Newtonian and thermal effects influence coating performance. The governing equations are transformed into non-dimensional form and simplified using lubrication approximation theory. Approximate analytical solutions are obtained via the perturbation technique, while numerical results are computed using both the finite difference method and the BVP-Midrich technique. Furthermore, More >

  • Open Access

    ARTICLE

    Comparative Analysis of Nano-Blood Flow in Mild to Severe Multiple Constricted Curved Arteries

    Sehrish Bibi1,*, Vincenzo Minutolo2, Obaid Ullah Mehmood3, Renato Zona2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2473-2493, 2025, DOI:10.32604/fdmp.2025.072470 - 30 October 2025

    Abstract Arterial stenosis is a critical condition with increasing prevalence among pediatric patients and young adults, making its investigation highly significant. Despite extensive studies on blood flow dynamics, limited research addresses the combined effects of nanoparticles and arterial curvature on unsteady pulsatile flow through multiple stenoses. This study aims to analyze the influence of nanoparticles on blood flow characteristics in realistic curved arteries with mild to severe overlapped constrictions. Using curvilinear coordinates, the thermal energy and momentum equations for nanoparticle-laden blood were derived, and numerical results were obtained through an explicit finite difference method. Key findings More >

  • Open Access

    ARTICLE

    Estimation of a Line Heat Source Using an Adjoint Free Gradient Based Inverse Analysis

    Farzad Mohebbi*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1417-1441, 2025, DOI:10.32604/fhmt.2025.069024 - 31 October 2025

    Abstract An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems. A constant heat source is considered in the steady-state heat transfer problem (a parameter estimation problem) and a time-varying heat source is considered in the transient heat transfer problem (a function estimation problem). Since a general irregular 2D heat conducting body is considered, a body-fitted grid generation is used to mesh the domain. Then governing equations and associated boundary and initial conditions are transformed from the physical domain to the computational domain and finite difference method is… More >

  • Open Access

    ARTICLE

    Unravelling Temperature Profile through Bifacial PV Modules via Finite Difference Method: Effects of Heat Internal Generation Due to Spectral Absorption

    Khadija Ibaararen, Mhammed Zaimi, Khadija El Ainaoui, El Mahdi Assaid*

    Energy Engineering, Vol.122, No.9, pp. 3487-3505, 2025, DOI:10.32604/ee.2025.067422 - 26 August 2025

    Abstract This study investigates the complex heat transfer dynamics in multilayer bifacial photovoltaic (bPV) solar modules under spectrally resolved solar irradiation. A novel numerical model is developed to incorporate internal heat generation resulting from optical absorption, grounded in the physical equations governing light-matter interactions within the module’s multilayer structure. The model accounts for reflection and transmission at each interface between adjacent layers, as well as absorption within individual layers, using the wavelength-dependent dielectric properties of constituent materials. These properties are used to calculate the spectral reflectance, transmittance, and absorption coefficients, enabling precise quantification of internal heat… More >

  • Open Access

    ARTICLE

    Mathematical Modeling of Leukemia within Stochastic Fractional Delay Differential Equations

    Ali Raza1,2,*, Feliz Minhós2,3,*, Umar Shafique4, Muhammad Mohsin5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3411-3431, 2025, DOI:10.32604/cmes.2025.060855 - 30 June 2025

    Abstract In 2022, Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer (IARC). Leukemia is still a threat and challenge for all regions because of 46.6% infection in Asia, and 22.1% and 14.7% infection rates in Europe and North America, respectively. To study the dynamics of Leukemia, the population of cells has been divided into three subpopulations of cells susceptible cells, infected cells, and immune cells. To investigate the memory effects and uncertainty in disease progression, leukemia modeling is developed using stochastic fractional… More >

  • Open Access

    ARTICLE

    Steady-State Solution of MHD Flow with Induced Magnetic Field

    Saykat Poddar1, Jui Saha1, Badhan Neogi1, Mohammad Sanjeed Hasan1, Muhammad Minarul Islam1, Giulio Lorenzini2,*, Md. Mahmud Alam3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 233-252, 2025, DOI:10.32604/fdmp.2025.056131 - 06 March 2025

    Abstract This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic (MHD) dissipative and radiative fluid flow, incorporating an induced magnetic field (IMF) and considering a relatively high concentration of foreign mass (accounting for Soret and Dufour effects) over a vertically oriented semi-infinite plate. The governing equations were normalized using boundary layer (BL) approximations. The resulting nonlinear system of partial differential equations (PDEs) was discretized and solved using an efficient explicit finite difference method (FDM). Numerical simulations were conducted using MATLAB R2015a, and the developed numerical code was verified through comparison with another… More >

  • Open Access

    PROCEEDINGS

    Analysis of High-Order Partial Differential Equations by Using the Generalized Finite Difference Method

    Tsung-Han Li1,*, Chia-Ming Fan1, Po-Wei Li2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012120

    Abstract The generalized finite difference method (GFDM), which cooperated with the fictitious-nodes technique, is proposed in this study to accurately analyze three-dimensional boundary value problems, governed by high-order partial differential equations. Some physical applications can be mathematically described by boundary value problems governed by high-order partial differential equations, but it is non-trivial to analyze the high-order partial differential equations by adopting conventional mesh-based numerical schemes, such as finite difference method, the finite element method, etc. In this study, the GFDM, a localized meshless method, is proposed to accurately and efficiently solve boundary value problems governed by… More >

  • Open Access

    ARTICLE

    Transient Thermal Distribution in a Wavy Fin Using Finite Difference Approximation Based Physics Informed Neural Network

    Sara Salem Alzaid1, Badr Saad T. Alkahtani1,*, Kumar Chandan2, Ravikumar Shashikala Varun Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2555-2574, 2024, DOI:10.32604/cmes.2024.055312 - 31 October 2024

    Abstract Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engineering domains. Gas turbine blade cooling, refrigeration, and electronic equipment cooling are a few prevalent applications. Thus, the thermal analysis of extended surfaces has been the subject of a significant assessment by researchers. Motivated by this, the present study describes the unsteady thermal dispersal phenomena in a wavy fin with the presence of convection heat transmission. This analysis also emphasizes a novel mathematical model in accordance with transient thermal change in a wavy profiled fin resulting from convection using the… More >

  • Open Access

    ARTICLE

    Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes

    Bingrui Ju1,2, Wenxiang Sun2, Wenzhen Qu1,2,*, Yan Gu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 267-280, 2024, DOI:10.32604/cmes.2024.052159 - 20 August 2024

    Abstract In this study, we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov (EFK) problem. The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme. Following temporal discretization, the generalized finite difference method (GFDM) with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node. These supplementary nodes are distributed along the boundary to match the number of boundary nodes. By incorporating supplementary nodes, the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation. More >

  • Open Access

    ARTICLE

    Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation

    M. Sridevi1, B. Shankar Goud2, Ali Hassan3,4,*, D. Mahendar5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 939-953, 2024, DOI:10.32604/fhmt.2024.050929 - 11 July 2024

    Abstract This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation. It is assumed that the medium under study is a grey, non-scattered fluid that both fascinates and transmits radiation. The leading equations are discretized using the finite difference method (FDM). Using MATLAB software, the impacts of flow factors on flow fields are revealed with particular examples in graphs and a table. In this regard, FDM results show that the velocity and temperature gradients increase with an increase of Eckert More >

Displaying 1-10 on page 1 of 92. Per Page