Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    Steady-State Solution of MHD Flow with Induced Magnetic Field

    Saykat Poddar1, Jui Saha1, Badhan Neogi1, Mohammad Sanjeed Hasan1, Muhammad Minarul Islam1, Giulio Lorenzini2,*, Md. Mahmud Alam3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 233-252, 2025, DOI:10.32604/fdmp.2025.056131 - 06 March 2025

    Abstract This study presents a numerical analysis of the steady-state solution for transient magnetohydrodynamic (MHD) dissipative and radiative fluid flow, incorporating an induced magnetic field (IMF) and considering a relatively high concentration of foreign mass (accounting for Soret and Dufour effects) over a vertically oriented semi-infinite plate. The governing equations were normalized using boundary layer (BL) approximations. The resulting nonlinear system of partial differential equations (PDEs) was discretized and solved using an efficient explicit finite difference method (FDM). Numerical simulations were conducted using MATLAB R2015a, and the developed numerical code was verified through comparison with another… More >

  • Open Access

    PROCEEDINGS

    Analysis of High-Order Partial Differential Equations by Using the Generalized Finite Difference Method

    Tsung-Han Li1,*, Chia-Ming Fan1, Po-Wei Li2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012120

    Abstract The generalized finite difference method (GFDM), which cooperated with the fictitious-nodes technique, is proposed in this study to accurately analyze three-dimensional boundary value problems, governed by high-order partial differential equations. Some physical applications can be mathematically described by boundary value problems governed by high-order partial differential equations, but it is non-trivial to analyze the high-order partial differential equations by adopting conventional mesh-based numerical schemes, such as finite difference method, the finite element method, etc. In this study, the GFDM, a localized meshless method, is proposed to accurately and efficiently solve boundary value problems governed by… More >

  • Open Access

    ARTICLE

    Transient Thermal Distribution in a Wavy Fin Using Finite Difference Approximation Based Physics Informed Neural Network

    Sara Salem Alzaid1, Badr Saad T. Alkahtani1,*, Kumar Chandan2, Ravikumar Shashikala Varun Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2555-2574, 2024, DOI:10.32604/cmes.2024.055312 - 31 October 2024

    Abstract Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engineering domains. Gas turbine blade cooling, refrigeration, and electronic equipment cooling are a few prevalent applications. Thus, the thermal analysis of extended surfaces has been the subject of a significant assessment by researchers. Motivated by this, the present study describes the unsteady thermal dispersal phenomena in a wavy fin with the presence of convection heat transmission. This analysis also emphasizes a novel mathematical model in accordance with transient thermal change in a wavy profiled fin resulting from convection using the… More >

  • Open Access

    ARTICLE

    Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes

    Bingrui Ju1,2, Wenxiang Sun2, Wenzhen Qu1,2,*, Yan Gu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 267-280, 2024, DOI:10.32604/cmes.2024.052159 - 20 August 2024

    Abstract In this study, we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov (EFK) problem. The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme. Following temporal discretization, the generalized finite difference method (GFDM) with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node. These supplementary nodes are distributed along the boundary to match the number of boundary nodes. By incorporating supplementary nodes, the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation. More >

  • Open Access

    ARTICLE

    Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation

    M. Sridevi1, B. Shankar Goud2, Ali Hassan3,4,*, D. Mahendar5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 939-953, 2024, DOI:10.32604/fhmt.2024.050929 - 11 July 2024

    Abstract This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation. It is assumed that the medium under study is a grey, non-scattered fluid that both fascinates and transmits radiation. The leading equations are discretized using the finite difference method (FDM). Using MATLAB software, the impacts of flow factors on flow fields are revealed with particular examples in graphs and a table. In this regard, FDM results show that the velocity and temperature gradients increase with an increase of Eckert More >

  • Open Access

    ARTICLE

    Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems

    Chunlei Ruan1,2,*, Cengceng Dong1, Zeyue Zhang1, Boyu Chen1, Zhijun Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2707-2728, 2024, DOI:10.32604/cmes.2024.050003 - 08 July 2024

    Abstract Transient heat conduction problems widely exist in engineering. In previous work on the peridynamic differential operator (PDDO) method for solving such problems, both time and spatial derivatives were discretized using the PDDO method, resulting in increased complexity and programming difficulty. In this work, the forward difference formula, the backward difference formula, and the centered difference formula are used to discretize the time derivative, while the PDDO method is used to discretize the spatial derivative. Three new schemes for solving transient heat conduction equations have been developed, namely, the forward-in-time and PDDO in space (FT-PDDO) scheme,… More >

  • Open Access

    ARTICLE

    Radiation Effect on Heat Transfer Analysis of MHD Flow of Upper Convected Maxwell Fluid between a Porous and a Moving Plate

    P. Pai Nityanand, B. Devaki, G. Bhat Pareekshith, V. S. Sampath Kumar*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 655-673, 2024, DOI:10.32604/fhmt.2024.050237 - 20 May 2024

    Abstract The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell (UCM) fluid between parallel plates. The lower plate is porous and stationary, while the top plate is impermeable and moving. The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations. The Homotopy Perturbation Method (HPM) is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution. The analysis includes plotting the velocity profile for different Reynolds number… More >

  • Open Access

    ARTICLE

    Steady Natural Convection from a Vertical Hot Plate with Variable Radiation

    Dewi Puspitasari1, Diah Kusuma Pratiwi1, Pramadhony Amran2, Kaprawi Sahim1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 305-315, 2024, DOI:10.32604/fhmt.2023.041882 - 21 March 2024

    Abstract The natural convection from a vertical hot plate with radiation and constant flux is studied numerically to know the velocity and temperature distribution characteristics over a vertical hot plate. The governing equations of the natural convection in two-dimension are solved with the implicit finite difference method, whereas the discretized equations are solved with the iterative relaxation method. The results show that the velocity and the temperature increase along the vertical wall. The influence of the radiation parameter in the boundary layer is significant in increasing the velocity and temperature profiles. The velocity profiles increase with More >

  • Open Access

    ARTICLE

    An Effective Meshless Approach for Inverse Cauchy Problems in 2D and 3D Electroelastic Piezoelectric Structures

    Ziqiang Bai1, Wenzhen Qu2,*, Guanghua Wu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2955-2972, 2024, DOI:10.32604/cmes.2023.031474 - 15 December 2023

    Abstract In the past decade, notable progress has been achieved in the development of the generalized finite difference method (GFDM). The underlying principle of GFDM involves dividing the domain into multiple sub-domains. Within each sub-domain, explicit formulas for the necessary partial derivatives of the partial differential equations (PDEs) can be obtained through the application of Taylor series expansion and moving-least square approximation methods. Consequently, the method generates a sparse coefficient matrix, exhibiting a banded structure, making it highly advantageous for large-scale engineering computations. In this study, we present the application of the GFDM to numerically solve More >

  • Open Access

    PROCEEDINGS

    A Novel Finite Difference Method for Solving Nonlinear Static Beam Equations of Wind Turbine Blade Under Large Deflections

    Hang Meng1,*, Jiaxing Wu1, Guangxing Wu1, Kai Long1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09685

    Abstract Wind energy is one of the most promising renewable energies in the world. To generate more electricity, the wind turbines are getting larger and larger in recent decades [1]. With the wind turbine size growing, the length of the blade is getting slender. The large deflections of slender wind turbine blade will inevitably lead to geometric nonlinearities [2], e.g. nonlinear coupling between torsion and deflection, which complicates the governing equations of motion. To simplify the solution of the nonlinear equations, in the current research, a novel finite-difference method was proposed to solve the nonlinear equations… More >

Displaying 1-10 on page 1 of 87. Per Page