Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (666)
  • Open Access

    PROCEEDINGS

    Simulation of Underwater Explosion Shock Wave Propagation in Heterogeneous Fluid Field

    Yuntao Lei1, Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011365

    Abstract The underwater explosion could cause the serious damage to the naval ships. Investigating the underwater explosion problem is crucial for the development of marine military power. During the recent years, the underwater explosion dynamics in the homogeneous fluid field has been investigated by lots of researchers. However, there often exist sound speed thermoclines in the real ocean environment, which leads to a more complex fluid environment than the homogeneous fluid. The corresponding numerical calculations become more complicated. In order to fully understand the underwater explosion dynamics in the real ocean environment, we perform the numerical… More >

  • Open Access

    PROCEEDINGS

    Hierarchically Designed Shell-Plate Metamaterials with Excellent Isotropic Yield Strength

    Zongxin Hu1,*, Junhao Ding1, Qingping Ma1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011288

    Abstract Hierarchically designed metamaterials can be found in numerous fields such as hard biomaterials and man-made structures. Recently, additively manufactured metamaterials are very promising in meeting the increasing demands for materials providing nearly isotropic yield strength in lightweight engineering as the controlled micro-structures. In this paper, a novel hierarchically shell-plate lattice structures are introduced by placing the plates along the closed shell-based structures. With fixed relative density of 10% for hierarchical metamaterials, the effects of different cell sizes and shell thicknesses of shell lattice structures on isotropy are studied. Based on theoretical analysis, the design map… More >

  • Open Access

    PROCEEDINGS

    A New Polygonal Scaled Boundary Finite Element Method Using Exact NURBS Boundaries

    Xinqing Li1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.010988

    Abstract Aiming to address the challenge of inaccurately describing the curve boundary of the complex design domain in traditional finite element mesh, this work proposes a new polygon mesh generation and polygonal scaled boundary finite element method (SBFEM) using exact non-uniform rational B-splines (NURBS) boundaries. The NURBS curve information of the boundary can be adaptively updated with mesh changes. Using SBFEM, the boundary elements can be discretized into NURBS elements and conventional elements, whose physical fields are respectively constructed using NURBS basis functions and Lagrange shape functions in the circumferential direction. Furthermore, in the radial direction, More >

  • Open Access

    ARTICLE

    A New Isogeometric Finite Element Method for Analyzing Structures

    Pan Su1, Jiaxing Chen2, Ronggang Yang2, Jiawei Xiang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1883-1905, 2024, DOI:10.32604/cmes.2024.055942 - 27 September 2024

    Abstract High-performance finite element research has always been a major focus of finite element method studies. This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method. Firstly, the physical field is approximated by uniform B-spline interpolation, while geometry is represented by non-uniform rational B-spline interpolation. By introducing a transformation matrix, elements of types C0 and C1 are constructed in the isogeometric finite element method. Subsequently, the corresponding calculation formats for one-dimensional bars, beams, and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and… More >

  • Open Access

    ARTICLE

    Microstructure effect analysis of carbon black-filled rubber composites

    Lihong Huang1, Xin Tao2, Tieping Wei3, Zhifeng Li4

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.1, pp. 1-15, 2024, DOI:10.23967/j.rimni.2024.01.002 - 15 January 2024

    Abstract The unidirectional tensile stress-strain curves of four kinds of carbon black-filled rubbers with different volume contents were obtained by mechanical experiments, and the fine morphology maps of the carbon black-filled rubber composites were obtained by electron microscope experiments. Based on the hyperelastic constitutive model of rubber, an ellipsoidal carbon black particles randomly distributed finite element model was established using DIGIMAT and ABAQUS, and uniaxial tensile simulation was carried out on the established two-dimensional model. The effects of the volume fraction, distribution angle and number of agglomerates of carbon black particles on the stress-strain relationship curve More >

  • Open Access

    ARTICLE

    Analysis of deformation of levee caused by large diameter shield tunneling in river crossing tunnel

    LU Zhongxiang1, SHOU Lingchao2, Rini Asnida Abdullah1, Muhammad Irfan Bin Shahrin1, CHEN Yintao1, SHAO Xin3, FAN Wenju4, Amber Islam1, ZHANG Hengxu5

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.1, pp. 1-8, 2024, DOI:10.23967/j.rimni.2024.03.003 - 25 March 2024

    Abstract This study utilizes ABAQUS finite element software to analyze embankment deformation during shield tunneling. Results reveal that shield tunneling effects are manageable.The left tunnel line successfully tunnels beneath the embankment, causing a maximum settlement of 8.7 mm, meeting regulations. The ground surface exhibits a "V"-shaped lateral settlement trough, approximately five times the tunnel centerline width. Conversely, the right tunnel line induces a more extensive impact, with a 12.2 mm maximum settlement.Different lateral settlement patterns emerge in soil at varying depths. The left tunnel creates a "V" shape, with slightly increasing settlement above the tunnel axis More >

  • Open Access

    ARTICLE

    Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group

    Yadong Xu1, Weixing Hong2, Mohammad Noori3,6,*, Wael A. Altabey4,*, Ahmed Silik5, Nabeel S.D. Farhan2

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 763-783, 2024, DOI:10.32604/sdhm.2024.053763 - 20 September 2024

    Abstract This study introduces an innovative “Big Model” strategy to enhance Bridge Structural Health Monitoring (SHM) using a Convolutional Neural Network (CNN), time-frequency analysis, and fine element analysis. Leveraging ensemble methods, collaborative learning, and distributed computing, the approach effectively manages the complexity and scale of large-scale bridge data. The CNN employs transfer learning, fine-tuning, and continuous monitoring to optimize models for adaptive and accurate structural health assessments, focusing on extracting meaningful features through time-frequency analysis. By integrating Finite Element Analysis, time-frequency analysis, and CNNs, the strategy provides a comprehensive understanding of bridge health. Utilizing diverse sensor More >

  • Open Access

    ARTICLE

    Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls

    Lianhua Ma1, Min Huang1, Linfeng Han2,*

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 853-869, 2024, DOI:10.32604/sdhm.2024.051374 - 20 September 2024

    Abstract Given the complexities of reinforced soil materials’ constitutive relationships, this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account. A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language, and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls. The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed, and the dynamic reactions of the two types More >

  • Open Access

    ARTICLE

    Design and structural analysis for a camber-morphing wing with deformable truss

    Shancheng Cao1, Sihan Zhao1, Yingge Ni2, Jin Jiao2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.40, No.2, pp. 1-11, 2024, DOI:10.23967/j.rimni.2024.03.004 - 03 April 2024

    Abstract A camber-morphing wing based on a deformable truss is proposed in this paper. And then the structural analysis of the proposed camber-morphing wing is achieved. Compared with the existing concept of camber-morphing wings, the deformation mode of this wing is easier to manufacture and implement in engineering. Due to the fact that the wing is driven by multiple motors, it has the characteristic of multiple degrees of freedom in camber-morphing, which can achieve various deformation controls. Establishing corresponding finite element models, the deformation ability under different driving conditions is simulated. The results indicate that compared More >

  • Open Access

    ARTICLE

    Numerical Simulation-Based Analysis of the Impact of Overloading on Segmentally Assembled Bridges

    Donghui Ma1, Wenqi Wu2, Yuan Li1, Lun Zhao1, Yingchun Cai2,*, Pan Guo2,*, Shaolin Yang2

    Structural Durability & Health Monitoring, Vol.18, No.5, pp. 663-681, 2024, DOI:10.32604/sdhm.2024.052677 - 19 July 2024

    Abstract Segmentally assembled bridges are increasingly finding engineering applications in recent years due to their unique advantages, especially as urban viaducts. Vehicle loads are one of the most important variable loads acting on bridge structures. Accordingly, the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present. This paper establishes the finite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge structure. First, a finite element model corresponding to the target bridge is established based on ABAQUS… More >

Displaying 1-10 on page 1 of 666. Per Page