Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling

    Muhammad Akbar1, Huali Pan1,*, Jiangcheng Huang2, Bilal Ahmed3, Guoqiang Ou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2835-2863, 2024, DOI:10.32604/cmes.2024.046993

    Abstract The present work aims to assess earthquake-induced earth-retaining (ER) wall displacement. This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels, reinforcement concrete facing panels, and gravity-type earth-retaining walls. The finite element (FE) simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses. The seismic performance of different models, which includes reinforcement concrete panels and gravity-type and hollow precast concrete ER walls, was simulated and examined using the FE approach. It also displays comparative studies such as stress distribution, deflection of the wall, acceleration across the… More >

  • Open Access

    ARTICLE

    Study on the Fire Behavior of Sandwich Wall Panels with GFRP Skins and a Wood-Web Core

    Guangjun Sun, Chuting Wang, Lu Wang*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1537-1553, 2022, DOI:10.32604/jrm.2022.018598

    Abstract To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire, three sandwich walls were tested. One of them was used for static load test and the other two for the one-side fire tests. Besides, temperature probe points were set on the sandwich walls to obtain the temperature distribution. Meanwhile, the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent. The temperature distribution and performance reduction of materials were also considered. The residual bearing capacity of… More >

  • Open Access

    ARTICLE

    Hip Fracture Risk Assessment Based on Different Failure Criteria Using QCT-Based Finite Element Modeling

    Hossein Bisheh1, 2, Yunhua Luo1, 3, Timon Rabczuk4, *

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 567-591, 2020, DOI:10.32604/cmc.2020.09393

    Abstract Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment. A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy, von-Mises stress, and von-Mises strain criteria during the single-leg stance and the sideways fall configurations. Choosing a proper failure criterion in hip fracture risk assessment is very important. The aim of this study is to define hip fracture risk index using the strain energy, von Mises stress, and von Mises strain criteria and compare the calculated fracture risk indices using… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Fatigue Crack Growth in Curved-Welded Joints Using Interface Elements

    M. S. Alam1, M.A. Wahab1,2

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 171-184, 2005, DOI:10.3970/sdhm.2005.001.171

    Abstract Fatigue life of curved structural joints in ship structures under constant amplitude cyclic loading has been studied in this research. A new approach for the simulation of fatigue crack growth in welded joints has been developed and the concept has been applied to welded curved butt-joints. The phenomena of crack propagation and interface debonding can be regarded as the formation of new surfaces. Thus, it is possible to model these problems by introducing the mechanism of surface formation. In the proposed method, the formation of new surface is represented by interface element based on the interface surface potential energy. The… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thin Layers

    Dan Givoli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 497-514, 2004, DOI:10.3970/cmes.2004.005.497

    Abstract Very thin layers with material properties which significantly differ from those of the surrounding medium appear in a variety of applications. Traditionally there are two extreme ways of handling such layers in finite element analysis: either they are fully modelled or they are totally ignored. The former option is often very expensive computationally, while the latter may lead to significant inaccuracies. Here a special technique of modeling thin layers is devised within the framework of the finite element method. This technique constitutes a prudent compromise between the two extremes mentioned above. The layer is replaced by an interface, namely a… More >

  • Open Access

    ABSTRACT

    On essential work of fracture method: theoretical consideration and numerical simulation

    X.-H. Chen1, Y.-W. Mai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.14, No.2, pp. 43-50, 2010, DOI:10.3970/icces.2010.014.043

    Abstract A general elastoplastic fracture mechanics theory is proposed for applying the Essential-Work-of-Fracture (EWF) Method to quasi-static and impact toughness characterization. Advanced finite element modeling is developed to simulate the EWF Method using the crack-tip opening angle criterion (CTOA) and the constitutive relation of the material under consideration. For Poly(ethylene-terephlate) (PET) films, the load-displacement curves are calculated for the whole crack propagation process of deeply double-edge notched tensile specimens (DENT) with different ligament lengths so as to determine the total work, the essential work and the non-essential work of fracture. The effects of specimen gauge length and ligament length on crack… More >

  • Open Access

    ARTICLE

    Intramyocardial Injections to De-Stiffen the Heart: A Subject-Specific in Silico Approach

    Yaghoub Dabiri1,3, Kevin L. Sack1,2, Semion Shaul1, Gabriel Acevedo-Bolton1, Jenny S. Choy3, Ghassan S. Kassab3, Julius M. Guccione1,*

    Molecular & Cellular Biomechanics, Vol.16, No.3, pp. 185-197, 2019, DOI:10.32604/mcb.2019.07364

    Abstract We hypothesized that minimally invasive injections of a softening agent at strategic locations in stiff myocardium could de-stiffen the left ventricle (LV) globally. Physics-based finite element models of the LV were created from LV echocardiography images and pressures recorded during experiments in four swine. Results confirmed animal models of LV softening by systemic agents. Regional de-stiffening of myocardium led to global de-stiffening of LV. The mathematical set up was used to design LV global de-stiffening by regional softening of myocardium. At an end diastolic pressure of 23 mmHg, when 8 ml of the free wall was covered by intramyocardial injections,… More >

  • Open Access

    ARTICLE

    Study of Biomechanical Response of Human Hand-Arm to Random Vibrations of Steering Wheel of Tractor

    G. Geethanjali, C. Sujatha

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 303-317, 2013, DOI:10.3970/mcb.2013.010.303

    Abstract This paper reports a study on the biomechanical response of a human hand-arm model to random vibrations of the steering wheel of a tractor. An anatomically accurate bone-only hand-arm model from TurboSquidTM was used to obtain a finite element (FE) model to understand the Hand-arm vibration syndrome (HAVS), which is a neurological and vascular disorder caused by exposure of the human hand-arm to prolonged vibrations. Modal analysis has been done to find out the first few natural frequencies and mode shapes of the system. Coupling of degrees of freedom (DOF) had to be done in the FE idealization to do… More >

  • Open Access

    ARTICLE

    Studies of Biaxial Mechanical Properties and Nonlinear Finite Element Modeling of Skin

    Xituan Shang*, Michael R. T. Yen1,†, M. Waleed Gaber

    Molecular & Cellular Biomechanics, Vol.7, No.2, pp. 93-104, 2010, DOI:10.3970/mcb.2010.007.093

    Abstract The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high… More >

  • Open Access

    ARTICLE

    Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction

    Libardo V. Vanegas-Useche1, Magd M. Abdel-Wahab2,3,4,*, Graham A. Parker5

    CMC-Computers, Materials & Continua, Vol.56, No.1, pp. 169-184, 2018, DOI: 10.3970/cmc.2018.01827

    Abstract In finite element modeling of impact, it is necessary to define appropriate values of the normal contact stiffness, Kn, and the Integration Time Step (ITS). Because impacts are usually of very short duration, very small ITSs are required. Moreover, the selection of a suitable value of Kn is a critical issue, as the impact behavior depends dramatically on this parameter. In this work, a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete… More >

Displaying 1-10 on page 1 of 19. Per Page