Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (141)
  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE HEAT TRANSFER OF MHD DISSIPATIVE CARREAU NANOFLUID FLOW OVER A STRETCHING SHEET

    M. Sathish Kumar, N. Sandeep* , B. Rushi Kumar

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.13

    Abstract Nowadays external magnetic fields are capable of setting the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of magnetic nanofluids and makes it aeolotropic. With this incentive, we investigate the flow and heat transfer of electrically conducting liquid film flow of Carreau nanofluid over a stretching sheet by considering the aligned magnetic field in the presence of space and temperature dependent heat source/sink and viscous dissipation. For this study, we considered kerosene as the base fluid embedded with More >

  • Open Access

    ARTICLE

    JOULE HEATING AND THERMAL DIFFUSION EFFECTS ON MHD RADIATIVE AND CONVECTIVE CASSON FLUID FLOW PAST AN OSCILLATING SEMI-INFINITE VERTICAL POROUS PLATE

    C. Veeresha , S. V. K. Varmaa , A .G. Vijaya Kumarb,*, M. Umamaheswarc, M. C. Rajuc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.1

    Abstract An analysis is performed to investigate the effects of Joule heating and thermal diffusion on unsteady, viscous, incompressible, electrically conducting MHD heat and mass transfer free convection Casson fluid flow past an oscillating semi-infinite vertical moving porous plate in the presence of heat source/sink and an applied transverse magnetic field. Initially it is assumed that the plate and surrounding fluid at the same temperature and concentration at all the points in stationary condition in the entire flow region. Thereafter a constant temperature is given to the plate hence the buoyancy effect is supporting the fluid… More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ON MHD NANOFLUID FLOW OVER A SEMI INFINITE FLAT PLATE EMBEDDED IN A POROUS MEDIUM WITH RADIATION ABSORPTION, HEAT SOURCE AND DIFFUSION THERMO EFFECT

    N. Vedavathia , G. Dharmaiahb,* , K.S. Balamuruganc, J. Prakashd

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.38

    Abstract The effects of radiation absorption, first order chemical reaction and diffusion thermo on MHD free convective heat and mass transfer flow of a nanofluid past a semi infinite vertical flat plate are analyzed. The temperature and concentration at the surface are assumed to be oscillatory type. Four types of cubic nano particles which are uniform and size namely, Silver (Ag), Aluminum (Al2O3), Copper (Cu) and Titanium Oxide (TiO2) with water as a base fluid is taken into account. The set of ordinary differential equations are solved by using regular perturbation technique. The impact of various flow More >

  • Open Access

    ARTICLE

    MHD NANOFLUID FLOW WITH VISCOUS DISSIPATION AND JOULE HEATING THROUGH A PERMEABLE CHANNEL

    Habib-Olah Sayehvanda , Shirley Abelmanb,*, Amir Basiri Parsaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.30

    Abstract Magnetohydrodynamic (MHD) nanofluid flow considered to be steady, incompressible and electrically conducting, flows through permeable plates in the presence of convective heating, models as a system of nonlinear partial differential equations which are solved analytically by the Differential Transform Method (DTM). Copper, aluminum oxide and titanium dioxide nanoparticles are considered with Carboxyl Methyl Cellulose (CMC)– water as the base fluid. Variation of the effects of pertinent parameters on fluid velocity and temperature is analyzed parametrically. Verification between analytical (DTM) and numerical (fourth-order Runge-Kutta scheme) results and previous published research is shown to be quite agreeable. More >

  • Open Access

    ARTICLE

    MHD MAXWELL FLUID FLOW IN PRESENCE OF NANO-PARTICLE THROUGH A VERTICAL POROUS-PLATE WITH HEAT-GENERATION, RADIATION ABSORPTION AND CHEMICAL REACTION

    S. M. Arifuzzamana , M. S. Khanb,*, M. S. Islamc , M. M. Islamc , B. M. J. Ranaa , P. Biswasa, S. F. Ahmmeda

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.25

    Abstract Present study concerns with the numerical investigation of MHD transient naturally convective and higher order chemically reactive Maxwell fluid with Nano-particle flow through a vertical porous plate with the effects of heat generation and radiation absorption. A boundary layer approximation is carried out to develop a flow model representing time dependent momentum, energy, and concentration equations. The governing model equations in partial differential equations (PDEs) form are transformed into a set of nonlinear ordinary differential equation (ODEs) by using non-similar technique. Explicit Finite Difference Method (EFDM) is employed by implementing an algorithm in Compaq Visual… More >

  • Open Access

    ARTICLE

    WILLIAMSON FLUID FLOW BEHAVIOUR OF MHD CONVECTIVERADIATIVE CATTANEO–CHRISTOV HEAT FLUX TYPE OVER A LINEARLY STRETCHED-SURFACE WITH HEAT GENERATION AND THERMAL-DIFFUSION

    Md. Shakhaoath Khana,*, Md. Mizanur Rahmana,b, S.M. Arifuzzamanc , Pronab Biswasc , Ifsana Karima

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.15

    Abstract A two-dimensional (2D) flow of an incompressible Williamson fluid of Cattaneo–Christov heat flux type over a linearly stretched surface with the influence of magnetic field, thermal radiation-diffusion, heat generation and viscous dissipation is carried out in the present study. To develop a Williamson flow model, a boundary layer approximation is taken into account. The non-dimensional, nonlinear, coupled ordinary differential equations with boundary condition are solved numerically using Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme. The influences of physical parameters on the velocity, temperature, concentration is analysed through graphical consequences. To validate More >

  • Open Access

    ARTICLE

    CHEMICALLY REACTIVE VISCOELASTIC FLUID FLOW IN PRESENCE OF NANO PARTICLE THROUGH POROUS STRETCHING SHEET

    S. M. Arifuzzaman1,* , Md. Shakhaoath Khan2 , Khan Enaet Hossain1 , Md. Sirajul Islam3 , Sonia Akter3, Raju Roy1

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.5

    Abstract Present study concerned with the theoretical work with numerical investigation of MHD transient naturally convective and higher order chemically reactive viscoelastic fluid with nano-particle flow through a vertical porous stretching sheet with the effects of heat generation and radiation absorption. A boundary layer approximation is carried out to develop a flow model representing time dependent momentum, energy, and concentration equations. The governing model equations in partial differential equations (PDEs) form were transformed into a set of nonlinear ordinary differential equation (ODEs) by using non-similar technique. Explicit Finite Difference Method (EFDM) was employed by implementing an… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ON MHD NANOFLUID FLOW PAST A VERTICAL POROUS PLATE IN A ROTATING SYSTEM

    P.V. Satya Narayanaa,*, B.Venkateswarlub

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.8

    Abstract In this paper, we study the chemical reaction and heat source effects on unsteady MHD free convection heat and mass transfer of a nanofluid flow past a semi-infinite flat plate in a rotating system. The plate is assumed to oscillate in time with steady frequency so that the solutions of the boundary layer are the similar oscillatory type. The innovation of the present work is closed-form analytic solutions are obtained for the momentum, energy and concentration equations. The influence of various parameters entering into the problem in the nanofluid velocity, temperature and concentration distributions, as More >

  • Open Access

    ARTICLE

    CHEMICAL REACTION AND RADIATION EFFECTS ON UNSTEADY MHD MICROPOLAR FLUID FLOW OVER A VERTICAL PLATE WITH VARIABLE TEMPERATURE

    Mekonnen Shiferaw Ayano*, J. S. Mathunjwa

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.9

    Abstract This paper presents a study of the Magnetohydrodynamic flow of incompressible micropolar fluid past an infinite vertical porous plate with combined heat and mass transfer. The plate oscillate harmonically in its own plane and the temperature raised linearly with respect to time. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results shown graphically and in table form. It is found that velocity and microrotation influenced appreciatively with parameters like radiation, magnetic, chemical reaction and coupling numbers. It is also noted that microrotation highly influenced by the magnetic More >

Displaying 91-100 on page 10 of 141. Per Page