Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (155)
  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    Optimization and Sensitivity Analysis of Non-Isothermal Carreau Fluid Flow in Roll Coating Systems with Fixed Boundary Constraints: A Comparative Investigation

    Mujahid Islam1, Fateh Ali1,*, Xinlong Feng1,*, M. Zahid2, Sana Naz Maqbool1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3511-3561, 2025, DOI:10.32604/cmes.2025.073678 - 23 December 2025

    Abstract Roll coating is a vital industrial process used in printing, packaging, and polymer film production, where maintaining a uniform coating is critical for product quality and efficiency. This work models non-isothermal Carreau fluid flow between a rotating roll and a stationary wall under fixed boundary constraints to evaluate how non-Newtonian and thermal effects influence coating performance. The governing equations are transformed into non-dimensional form and simplified using lubrication approximation theory. Approximate analytical solutions are obtained via the perturbation technique, while numerical results are computed using both the finite difference method and the BVP-Midrich technique. Furthermore, More >

  • Open Access

    ARTICLE

    Numerical Simulation via Homotopy Perturbation Approach of a Dissipative Squeezed Carreau Fluid Flow Due to a Sensor Surface

    Sara I. Abdelsalam1,2,*, W. Abbas3, Ahmed M. Megahed4, Hassan M. H. Sadek5, M. S. Emam5

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1511-1527, 2025, DOI:10.32604/fhmt.2025.069359 - 31 October 2025

    Abstract This study rigorously examines the interplay between viscous dissipation, magnetic effects, and thermal radiation on the flow behavior of a non-Newtonian Carreau squeezed fluid passing by a sensor surface within a micro cantilever channel, aiming to deepen our understanding of heat transport processes in complex fluid dynamics scenarios. The primary objective is to elucidate how physical operational parameters influence both the velocity of fluid flow and its temperature distribution, utilizing a comprehensive numerical approach. Employing a combination of mathematical modeling techniques, including similarity transformation, this investigation transforms complex partial differential equations into more manageable ordinary… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Jeffrey Nanofluid Flow across an Inclined Stretching Sheet via Porous Media with Slip Effects

    Pennelli Saila Kumari1, Shaik Mohammed Ibrahim1,*, Prathi Vijaya Kumar2, Giulio Lorenzini3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1639-1660, 2025, DOI:10.32604/fhmt.2025.069063 - 31 October 2025

    Abstract In this paper, the authors examine various slip effects on the magnetic field and thermal radiative impacts on the flow, mass and heat transfer of a Jeffrey nanofluid over a 2-dimensional inclined stretching sheet by a porous media. The offered work is modelled to be in the form of a combination of coupled highly nonlinear partial differential equations in dimensional contexts. Governing equations were obtained, dimensionless parameters were defined in terms of similarity parameters, and the solutions were obtained by the Homotopy Analysis Method (HAM). The analysis is significant as the effects of viscosity are… More >

  • Open Access

    ARTICLE

    Heat Transfer Analysis of Temperature-Sensitive Ternary Nanofluid in MHD and Porous Media Flow: Influence of Volume Fraction and Shape

    Barkilean Jaismitha1, Jagadeesan Sasikumar2,*, Samad Noeiaghdam3,*, Unai Fernandez-Gamiz4, Thirugnanasambandam Arunkumar1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1529-1554, 2025, DOI:10.32604/fhmt.2025.067869 - 31 October 2025

    Abstract The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel, focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field. This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport. By suspending nanoparticles of diverse shapes-platelets, blades, and spheres in a hybrid base fluid comprising cobalt ferrite, magnesium oxide, and graphene oxide, the study examines the influence of both small and large volume fraction values. The governing equations are converted into a dimensionless form. With More >

  • Open Access

    REVIEW

    Enhanced Oil Recovery in Sandstone Reservoirs: A Review of Mechanistic Advances and Hydrocarbon Predictive Techniques

    Surajudeen Sikiru1,2,*, Jemilat Yetunde Yusuf 3, Hassan Soleimani4, Niraj Kumar5, Zia ur Rehman6, Bonnia N N1,*

    Energy Engineering, Vol.122, No.10, pp. 3917-3960, 2025, DOI:10.32604/ee.2025.067815 - 30 September 2025

    Abstract Enhanced oil recovery (EOR) refers to the many methodologies used to augment the volume of crude oil extracted from an oil reservoir. These approaches are used subsequent to the exhaustion of basic and secondary recovery methods. There are three primary categories of Enhanced Oil Recovery (EOR): thermal, gas injection, and chemical. Enhanced oil recovery methods may be costly and intricate; yet, they facilitate the extraction of supplementary oil that would otherwise remain in the reservoir. Enhanced Oil Recovery (EOR) may prolong the lifespan of an oil field and augment the total output from a specific… More >

  • Open Access

    ARTICLE

    Spectral Quasi-Linearization Study of Variable Viscosity Casson Nanofluid Flow under Buoyancy and Magnetic Fields

    B. Rajesh1, Fateh Mebarek-Oudina2,3,4,*, N. Vishnu Ganesh1, Qasem M. Al-Mdallal5, Sami Ullah Khan6, Murali Gundagnai7, Hillary Muzara8

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1243-1260, 2025, DOI:10.32604/fhmt.2025.066782 - 29 August 2025

    Abstract The behavior of buoyancy-driven magnetohydrodynamic (MHD) nanofluid flows with temperature-sensitive viscosity plays a pivotal role in high-performance thermal systems such as electronics cooling, nuclear reactors, and metallurgical processes. This study focuses on the boundary layer flow of a Casson-based sodium alginate Fe3O4 nanofluid influenced by magnetic field-dependent viscosity and thermal radiation, as it interacts with a vertically stretching sheet under dissipative conditions. To manage the inherent nonlinearities, Lie group transformations are applied to reformulate the governing boundary layer equations into similarity forms. These reduced equations are then solved via the Spectral Quasi-Linearization Method (SQLM), ensuring high More >

  • Open Access

    ARTICLE

    Characteristics of Heat Transfer in a Reactive Third-Grade Fluid Flow through Porous Plates with Uniform Suction/Injection

    Rajiva Lochan Mohanty, Sumanta Chaudhuri*, Anish Pandey

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 899-919, 2025, DOI:10.32604/fhmt.2025.064444 - 30 June 2025

    Abstract Characteristics of heat transfer and flow of Newtonian and non-Newtonian fluids through porous walls and in porous media are studied due to their wide range of applications including geothermal reservoirs, heat exchangers, marine propulsion, and aerodynamics. The current study investigates the characteristics of heat transport in a reactive third-grade fluid, moving through permeable parallel plates, with uniform suction/injection velocity. The two permeable, parallel plates are maintained at the same, constant temperature. After being transformed into its dimensionless equivalent, governing equations are solved by employing the Least Squares Method (LSM). The LSM results are further validated… More >

  • Open Access

    ARTICLE

    Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus

    Denis Polezhaev*, Alexey Vjatkin, Victor Kozlov

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1051-1061, 2025, DOI:10.32604/fdmp.2025.062000 - 30 May 2025

    Abstract The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally. In the absence of librations, the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus. It is demonstrated that the librational liquefaction of the granular material results in pattern formation. This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force. The inertial wave induces vortical fluid flow which entrains particles More > Graphic Abstract

    Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus

  • Open Access

    ARTICLE

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

    Shervin Fateh Khanshir1, Saeed Dinarvand2,*, Ramtin Fateh Khanshir3

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 663-684, 2025, DOI:10.32604/fhmt.2025.060559 - 25 April 2025

    Abstract This article aims to model and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose (CMC) nanofluid within a convergent-divergent shaped microchannel (Two-dimensional). The base fluid, water + CMC (0.5%), is mixed with CuO and Al2O3 nanoparticles at volume fractions of 0.5% and 1.5%, respectively. The research is conducted through the conjugate usage of experimental and theoretical models to represent more realistic properties of the non-Newtonian nanofluid. Three types of microchannels including straight, divergent, and convergent are considered, all having the same length and identical inlet cross-sectional area. Using ANSYS FLUENT software, Navier-Stokes equations… More > Graphic Abstract

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

Displaying 1-10 on page 1 of 155. Per Page