Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (104)
  • Open Access

    REVIEW

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

    Hao Tan1,2, Zeai Huang1,2,*, Runxian Gong2, Junming Mei2, Kejie Wu2, Tianyu Yan2, Daoquan Zhu2, Zhibin Zhang2, Ruiyang Zhang1,2

    Energy Engineering, Vol.122, No.11, pp. 4331-4347, 2025, DOI:10.32604/ee.2025.070226 - 27 October 2025

    Abstract Under the driving goal of carbon neutrality, biogas reforming technology has garnered significant attention due to its ability to convert greenhouse gases (CH4/CO2) into syngas (H2/CO). Conventional nickel-based catalysts suffer from issues such as carbon deposition, sintering and sulfur poisoning. Non-nickel-based perovskite materials, with their tunable crystal structure, dynamic oxygen vacancy characteristics, and excellent anti-coking/anti-sulfur performance, have emerged as a promising alternative. This review systematically summarizes the design for non-nickel-based perovskite materials, including optimizing lattice oxygen migration ability and active site stability by A/B site doping, defect engineering and heterojunction construction. The enhancing the conversion rate… More > Graphic Abstract

    Research Advances in the Application of Non-Nickel-Based Perovskite Materials for Biogas Reforming

  • Open Access

    ARTICLE

    Optimization Configuration Method for Grid-Side Grid-Forming Energy Storage System Based on Genetic Algorithm

    Yuqian Qi*, Yanbo Che, Liangliang Liu, Jiayu Ni, Shangyuan Zhang

    Energy Engineering, Vol.122, No.10, pp. 3999-4017, 2025, DOI:10.32604/ee.2025.068054 - 30 September 2025

    Abstract The process of including renewable energy sources in power networks is moving quickly, so the need for innovative configuration solutions for grid-side ESS has grown. Among the new methods presented in this paper is GA-OCESE, which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks. This is one of the methods suggested in this study, which aims to enhance the sizing, positioning, and operational characteristics of structured ESS under dynamic grid conditions. Particularly, the aim is to maximize efficiency. A multiobjective genetic algorithm, the GA-OCESE framework, considers all these factors simultaneously. Besides… More >

  • Open Access

    ARTICLE

    Calculation of Commutation Failure Overvoltage in High-Voltage Direct Current Transmission Terminal Systems with Grid-Forming Renewable Energy Sources

    Weibing Xu1, Bo Yao2,*, Xiangjun Quan3, Xunyou Zhang1, Ning Zou2, Shuo Liu2, Jia Wang4, Jiansuo Zhang4

    Energy Engineering, Vol.122, No.10, pp. 4225-4243, 2025, DOI:10.32604/ee.2025.066738 - 30 September 2025

    Abstract The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia. Grid-forming renewable energy sources (GF-RES) has a significant improvement effect on system inertia. Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage, threatening the safe and stable operation of the power grid. However, there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration. Based on the existing equivalent model of high-voltage… More >

  • Open Access

    ARTICLE

    3-Hydroxysterol Δ24-Reductase Promotes Ovarian Cancer Progression by Activating the TGF-1/Smad2/3 Signaling Pathway

    Wenjing Liao1,#, Liaodi Wang2,#, Zhen Huang1, Ziyu Zou1, Yimin Liu1, Haoyue Liu1, Zhaoning Duan1, Liangdan Tang1,*

    Oncology Research, Vol.33, No.10, pp. 3041-3064, 2025, DOI:10.32604/or.2025.065451 - 26 September 2025

    Abstract Objectives: Ovarian cancer (OC) is a highly heterogeneous disease characterized by high metastatic potential and frequent recurrence. 3β-hydroxysterol Δ24-reductase (DHCR24) is closely associated with the progression of various malignant tumors, but its role in OC remains unexplored. This study is the first to systematically investigate the function of DHCR24 in OC and elucidate its mechanism in promoting OC progression, providing novel theoretical insights for targeted therapy. Methods: The expression of DHCR24 was evaluated in tissues using bioinformatics and clinical data; the impact of DHCR24 on the malignant behavior of OC was assessed through in vivo and inMore >

  • Open Access

    REVIEW

    Transforming the Leather Industry: A Comprehensive Review on Leather Alternatives

    Alehegn Atalay Birlie*

    Journal of Renewable Materials, Vol.13, No.9, pp. 1783-1802, 2025, DOI:10.32604/jrm.2025.02025-0039 - 22 September 2025

    Abstract This study explores vegan leather, an eco-friendly substitute for conventional animal-derived leather. Using materials like polyurethane, pineapple leaves, cork, and recycled plastics, vegan leather aims to transform the fashion industry and consumer products while addressing environmental concerns. Despite its advantages, challenges related to availability and durability persist. The booming market for vegan leather is expected to reach billions of dollars, reflecting a broader societal shift towards sustainable and cruelty-free alternatives. The review traces the historical development of vegan leather from its origins in Germany to modern innovations like Mylo and Piñatex. By comparing these materials More >

  • Open Access

    ARTICLE

    CYB5D2 inhibits the malignant progression of hepatocellular carcinoma by inhibiting TGF-β expression and epithelial-mesenchymal transition

    DONG JIANG1, ZHI QI3, ZHIYING XU2,*, YIRAN LI1,*

    Oncology Research, Vol.33, No.3, pp. 709-722, 2025, DOI:10.32604/or.2024.050125 - 28 February 2025

    Abstract Background: Hepatocellular carcinoma (HCC) is a prevalent liver malignancy. This study examined the roles of transforming growth factor beta (TGF-β) and cytochrome b5 domain containing 2 (CYB5D2) in HCC etiology and their prognostic biomarker potential. Methods: Key modules and prognostic genes were identified by analyzing the GSE101685 dataset by weighted gene co-expression network analysis (WGCNA) and Least absolute shrinkage and selection operator (LASSO) Cox regression. The expression levels of CYB5D2 and TGF-β in HCC cell lines were quantified using Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB) assays. Effects of CYB5D2 overexpression on cell proliferation,… More >

  • Open Access

    ARTICLE

    Steam Methane Reforming (SMR) Combined with Ship Based Carbon Capture (SBCC) for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas (LNG) Carriers

    Ikram Belmehdi1,*, Boumedienne Beladjine1, Mohamed Djermouni1, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 71-85, 2025, DOI:10.32604/fdmp.2024.058510 - 24 January 2025

    Abstract The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefied natural gas (LNG) carrier. This investigation focuses on integrating two distinct processes—steam methane reforming (SMR) and ship-based carbon capture (SBCC). The first refers to the common practice used to obtain hydrogen from methane (often derived from natural gas), where steam reacts with methane to produce hydrogen and carbon dioxide (CO2). The second refers to capturing the CO2 generated during the SMR process on board ships. By capturing and storing the carbon emissions, the process significantly reduces its… More >

  • Open Access

    ARTICLE

    Transforming Education with Photogrammetry: Creating Realistic 3D Objects for Augmented Reality Applications

    Kaviyaraj Ravichandran*, Uma Mohan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 185-208, 2025, DOI:10.32604/cmes.2024.056387 - 17 December 2024

    Abstract Augmented reality (AR) is an emerging dynamic technology that effectively supports education across different levels. The increased use of mobile devices has an even greater impact. As the demand for AR applications in education continues to increase, educators actively seek innovative and immersive methods to engage students in learning. However, exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration. Concurrently, this surge in demand has prompted the identification of specific barriers, one of which is three-dimensional (3D) modeling. Creating 3D objects for augmented reality education applications can be challenging and… More > Graphic Abstract

    Transforming Education with Photogrammetry: Creating Realistic 3D Objects for Augmented Reality Applications

  • Open Access

    ARTICLE

    Transforming Healthcare: AI-NLP Fusion Framework for Precision Decision-Making and Personalized Care Optimization in the Era of IoMT

    Soha Rawas1, Cerine Tafran1, Duaa AlSaeed2, Nadia Al-Ghreimil2,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4575-4601, 2024, DOI:10.32604/cmc.2024.055307 - 19 December 2024

    Abstract In the rapidly evolving landscape of healthcare, the integration of Artificial Intelligence (AI) and Natural Language Processing (NLP) holds immense promise for revolutionizing data analytics and decision-making processes. Current techniques for personalized medicine, disease diagnosis, treatment recommendations, and resource optimization in the Internet of Medical Things (IoMT) vary widely, including methods such as rule-based systems, machine learning algorithms, and data-driven approaches. However, many of these techniques face limitations in accuracy, scalability, and adaptability to complex clinical scenarios. This study investigates the synergistic potential of AI-driven optimization techniques and NLP applications in the context of the… More >

  • Open Access

    ARTICLE

    Fuzzy Control Optimization of Loading Paths for Hydroforming of Variable Diameter Tubes

    Yong Xu1,2, Xuewei Zhang1, Wenlong Xie2,*, Shihong Zhang2, Xinyue Huang3, Yaqiang Tian1, Liansheng Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2753-2768, 2024, DOI:10.32604/cmc.2024.055408 - 18 November 2024

    Abstract The design of the loading path is one of the important research contents of the tube hydroforming process. Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization. In this paper, the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object. Fuzzy control was used to optimize the loading path, and the fuzzy rule base was established based on FEM. The minimum wall thickness and wall thickness reduction rate were determined as input membership functions, and the axial feeds variable value… More >

Displaying 1-10 on page 1 of 104. Per Page