Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (350)
  • Open Access

    ARTICLE

    On the NGF Procedure for LBIE Elastostatic Fracture Mechanics

    L.S. Miers1, J.C.F. Telles2

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.3, pp. 161-170, 2006, DOI:10.3970/cmes.2006.014.161

    Abstract This work aims at extending the concept of the Numerical Green's Function (NGF), well known from boundary element applications to fracture mechanics, to the Local Boundary Integral Equation (LBIE) context. As a "companion" solution, the NGF is used to remove the integrals over the crack boundary and is introduced only for source points whose support touches or contains the crack. The results obtained with the coupling of NGF-LBIE in previous potential discontinuity Laplace's equation problems and the authors' experience in NGF-BEM fracture mechanics were the motivation for this development. More >

  • Open Access

    ARTICLE

    Applications of MLPG Method in Dynamic Fracture Problems

    L. Gao1, K. Liu1,2, Y. Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 181-196, 2006, DOI:10.3970/cmes.2006.012.181

    Abstract A new numerical algorithm based on the Meshless Local Petrov-Galerkin approach is presented for analyzing the dynamic fracture problems in elastic media. To simplify the treatment of essential boundary condition, a novel modified Moving Least Square (MLS) procedure is proposed by introducing Lagrange multiplier into MLS procedure, which can perform both MLS approximation and interpolation in one approximation domain. The compact spline function is used as the test function in the local form of elasto-dynamic equations. For the feature of stress wave propagation, the coupled second-order ODEs respect to the time are solved by the… More >

  • Open Access

    ARTICLE

    On Three-dimensional Effects in Propagation of Surface-breaking Cracks

    A. Dimitrov1, F.-G. Buchholz2, E. Schnack3

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.1, pp. 1-26, 2006, DOI:10.3970/cmes.2006.012.001

    Abstract Crack propagation in 3D-structures cannot be reduced (in general) to a series of plane problems along the crack front edge, due to the existence of some "corners'' on the crack front, where the elastic fields are of a real three-dimensional nature. The most important example for such a corner ist the point, where the crack front intersects a free surface of the body. According to the concept of weak and strong singularities, it is possible to obtain the asymptotics for the stress intensity factor (SIF) as well as the strain energy release rate (SERR) in… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Dynamic Elasto Visco-plastic Fracture Using Moving Finite Element Method

    T. Fujimoto1 and T. Nishioka1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 91-102, 2006, DOI:10.3970/cmes.2006.011.091

    Abstract In the dynamic fracture of metallic material, some cracks propagate with the incidence of plastic deformation, and distinct plastic strain remains near the post-propagation area. In order to elucidate these dynamic nonlinear fracture processes, the moving finite element method is developed for nonlinear crack propagation. The T* integral is used as the parameter to estimate crack tip condition. First, the effect of material viscosity and crack propagation velocity have been discussed based on the numerical results for fracture under pure mode I high speed loading. Under mixed mode loading, numerical simulations for fracture path prediction More >

  • Open Access

    ARTICLE

    Dimple Fracture Simulation of Fracture Specimen under Different Constraint Conditions

    Masanori Kikuchi 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 49-60, 2006, DOI:10.3970/cmes.2006.011.049

    Abstract Three kinds of fracture specimens are tested under different constraint conditions. By the SEM(Scanning Electron Microscope) observation, it is shown that the roughness of fracture surface is different from each other largely. This is the effect of constraint condition. The dimple fracture process is simulated by the finite element method using Gurson’s constitutive equation, and the crack tip stress fields are obtained. The distributions of stress triaxiality qualitatively agree with the experimental results. The J-R curves obtained also qualitatively agree with those of experiments, and the fracture surface roughness is well simulated. More >

  • Open Access

    ARTICLE

    Finite Element modeling of Nomex® honeycomb cores : Failure and effective elastic properties

    L. Gornet1, S. Marguet2, G. Marckmann3

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 63-74, 2006, DOI:10.3970/cmc.2006.004.063

    Abstract The purpose of the present study is to determine the components of the effective elasticity tensor and the failure properties of Nomex® honeycomb cores. In order to carry out this study, the NidaCore software, a program dedicated to Nomex®Cores predictions, has been developed using the Finite Element tool Cast3M-CEA. This software is based on periodic homogenization techniques and on the modelling of structural instability phenomena. The homogenization of the periodic microstructure is realized thanks to a strain energy approach. It assumes the mechanical equivalence between the microstructures of a RVE and a similar homogeneous macroscopic volume.… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiple Dynamic Crack Branching Phenomena

    T. Nishioka1, S. Tchouikov1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 147-154, 2006, DOI:10.3970/cmc.2006.003.147

    Abstract In this study, phenomena of multiple branching of dynamically propagating crack are investigated numerically. The complicated paths of cracks propagating in a material are simulated by moving finite element method based on Delaunay automatic triangulation (MFEM BODAT), which was extended for such problems. For evaluation of fracture parameters for propagating and branching cracks switching method of the path independent dynamic J integral was used. Using these techniques the generation phase simulation of multiple dynamic crack branching was performed. Various dynamic fracture parameters, which are almost impossible to obtain by experimental technique alone, were accurately evaluated. More >

  • Open Access

    ARTICLE

    Cohesive Strength and Separation Energy as Characteristic Parameters of Fracture Toughness and Their Relation to Micromechanics

    W. Brocks1

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 233-244, 2005, DOI:10.3970/sdhm.2005.001.233

    Abstract A review on phenomenological fracture criteria is given, based on the energy balance for cracked bodies, and the respective toughness parameters are related to micromechanical processes. Griffith's idea of introducing a "surface energy" and Barenblatt's concept of a "process zone" ahead of the crack tip build the foundation of modern cohesive models, which have become versatile tools for numerical simulations of crack extension. The cohesive strength and the separation energy used as phenomenological material parameters in these models appear to represent a physically significant characterisation of "fracture toughness". Micromechanical interpretations of these parameters can be More >

  • Open Access

    ARTICLE

    Computational Analysis of Surface and Subsurface Initiated Fatigue Crack Growth due to Contact Loading

    S. Glodež1, B. Aberšek1, G. Fajdiga2, J. Flašker2

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 215-224, 2005, DOI:10.3970/sdhm.2005.001.215

    Abstract A computational model for simulation of surface and subsurface initiated fatigue crack growth due to contact loading is presented. The model is based on fracture mechanics theory where the required materials properties are obtained from common fatigue tests. For computational simulations an equivalent model of two contacting cylinders is used instead of simulating the actual contact of mechanical elements. The discretised model with the initial crack on or under the surface is then subjected to normal contact pressure, which takes into account the elasto-hydro-dynamic (EHD) lubrication conditions, and tangential loading due to friction between contacting More >

  • Open Access

    ARTICLE

    An Improved Wheeler Model for Remaining Life Prediction of Cracked Plate Panels Under Tensile-Compressive Overloading

    A. Rama Ch,ra Murthy1, G.S. Palani1, Nagesh R. Iyer1

    Structural Durability & Health Monitoring, Vol.1, No.3, pp. 203-214, 2005, DOI:10.3970/sdhm.2005.001.203

    Abstract This paper presents an improved Wheeler residual stress model for remaining life prediction of the cracked structural components under variable amplitude loading. The improvement to the Wheeler residual stress model is in two folds. One is expressions for the shaping exponent, which are generally obtained through experiments. Another is calculation of effective plastic zone size to incorporate the sequent effects under tensile-compressive overloading. The remaining life prediction has been carried out by employing the linear elastic fracture mechanics (LEFM) principles. Studies on remaining life prediction of cracked plate panels subjected to tensile-compressive overloading have been More >

Displaying 311-320 on page 32 of 350. Per Page