Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (343)
  • Open Access

    ARTICLE

    VKFQ: A Verifiable Keyword Frequency Query Framework with Local Differential Privacy in Blockchain

    Youlin Ji, Bo Yin*, Ke Gu

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4205-4223, 2024, DOI:10.32604/cmc.2024.049086

    Abstract With its untameable and traceable properties, blockchain technology has been widely used in the field of data sharing. How to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data sharing. In this paper, we study verifiable keyword frequency (KF) queries with local differential privacy in blockchain. Both the numerical and the keyword attributes are present in data objects; the latter are sensitive and require privacy protection. However, prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF queries. We propose an efficient framework that… More >

  • Open Access

    ARTICLE

    WebFLex: A Framework for Web Browsers-Based Peer-to-Peer Federated Learning Systems Using WebRTC

    Mai Alzamel1,*, Hamza Ali Rizvi2, Najwa Altwaijry1, Isra Al-Turaiki1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4177-4204, 2024, DOI:10.32604/cmc.2024.048370

    Abstract Scalability and information personal privacy are vital for training and deploying large-scale deep learning models. Federated learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web browsers. Nevertheless, relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client numbers. Additionally, information relating to the training dataset can possibly be extracted from the distributed weights, potentially reducing the privacy of the local data used for training. In this research paper, we aim to investigate… More >

  • Open Access

    ARTICLE

    Ethical Decision-Making Framework Based on Incremental ILP Considering Conflicts

    Xuemin Wang, Qiaochen Li, Xuguang Bao*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3619-3643, 2024, DOI:10.32604/cmc.2024.047586

    Abstract Humans are experiencing the inclusion of artificial agents in their lives, such as unmanned vehicles, service robots, voice assistants, and intelligent medical care. If the artificial agents cannot align with social values or make ethical decisions, they may not meet the expectations of humans. Traditionally, an ethical decision-making framework is constructed by rule-based or statistical approaches. In this paper, we propose an ethical decision-making framework based on incremental ILP (Inductive Logic Programming), which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches. As the current incremental ILP makes it difficult to solve conflicts, we propose a… More >

  • Open Access

    ARTICLE

    A Framework for Enhancing Privacy and Anonymity in Blockchain-Enabled IoT Devices

    Muhammad Saad1, Muhammad Raheel Bhutta2, Jongik Kim3,*, Tae-Sun Chung1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4263-4282, 2024, DOI:10.32604/cmc.2024.047132

    Abstract With the increase in IoT (Internet of Things) devices comes an inherent challenge of security. In the world today, privacy is the prime concern of every individual. Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage. The challenge is keeping confidentiality and continuing to make the person innominate throughout the system. To address this, we present our proposed architecture where we manage IoT devices using blockchain technology. Our proposed architecture works on and off blockchain integrated with… More >

  • Open Access

    ARTICLE

    Systematic Security Guideline Framework through Intelligently Automated Vulnerability Analysis

    Dahyeon Kim1, Namgi Kim2, Junho Ahn2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3867-3889, 2024, DOI:10.32604/cmc.2024.046871

    Abstract This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities, generating applicable guidelines based on real-world software. The existing analysis of software security vulnerabilities often focuses on specific features or modules. This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software. The key novelty lies in overcoming the constraints of partial approaches. The proposed framework utilizes data from various sources to create a comprehensive functionality profile, facilitating the derivation of real-world security guidelines. Security guidelines are dynamically generated… More >

  • Open Access

    ARTICLE

    Classification and clustering of buildings for understanding urban dynamics

    A framework for processing spatiotemporal data

    Perez Joan1, Fusco Giovanni1, Sadahiro Yukio2

    Revue Internationale de Géomatique, Vol.31, No.2, pp. 303-327, 2022, DOI:10.3166/RIG.31.303-327© 2022

    Abstract This paper presents different methods implemented with the aim of studying urban dynamics at the building level. Building types are identified within a comprehensive vector-based building inventory, spanning over at least two time points. First, basic morphometric indicators are computed for each building: area, floor-area, number of neighbors, elongation, and convexity. Based on the availability of expert knowledge, different types of classification and clustering are performed: supervised tree-like classificatory model, expert-constrained k-means and combined SOM-HCA. A grid is superimposed on the test region of Osaka (Japan) and the number of building types per cell and for each period is computed,… More >

  • Open Access

    ARTICLE

    An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning

    Irfan Haider1, Muhammad Attique Khan1,*, Muhammad Nazir1, Taerang Kim2, Jae-Hyuk Cha2

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 529-554, 2024, DOI:10.32604/csse.2023.042080

    Abstract Fruit infections have an impact on both the yield and the quality of the crop. As a result, an automated recognition system for fruit leaf diseases is important. In artificial intelligence (AI) applications, especially in agriculture, deep learning shows promising disease detection and classification results. The recent AI-based techniques have a few challenges for fruit disease recognition, such as low-resolution images, small datasets for learning models, and irrelevant feature extraction. This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization. Three fruit types have been employed in this work for… More >

  • Open Access

    ARTICLE

    A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation

    Kai Jiang, Bin Cao*, Jing Fan

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2965-2984, 2024, DOI:10.32604/cmes.2023.046348

    Abstract Multimodal sentiment analysis utilizes multimodal data such as text, facial expressions and voice to detect people’s attitudes. With the advent of distributed data collection and annotation, we can easily obtain and share such multimodal data. However, due to professional discrepancies among annotators and lax quality control, noisy labels might be introduced. Recent research suggests that deep neural networks (DNNs) will overfit noisy labels, leading to the poor performance of the DNNs. To address this challenging problem, we present a Multimodal Robust Meta Learning framework (MRML) for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously. Specifically, we… More >

  • Open Access

    ARTICLE

    Robust and Trustworthy Data Sharing Framework Leveraging On-Chain and Off-Chain Collaboration

    Jinyang Yu1,2, Xiao Zhang1,2,3,*, Jinjiang Wang1,2, Yuchen Zhang1,2, Yulong Shi1,2, Linxuan Su1,2, Leijie Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2159-2179, 2024, DOI:10.32604/cmc.2024.047340

    Abstract The proliferation of Internet of Things (IoT) systems has resulted in the generation of substantial data, presenting new challenges in reliable storage and trustworthy sharing. Conventional distributed storage systems are hindered by centralized management and lack traceability, while blockchain systems are limited by low capacity and high latency. To address these challenges, the present study investigates the reliable storage and trustworthy sharing of IoT data, and presents a novel system architecture that integrates on-chain and off-chain data manage systems. This architecture, integrating blockchain and distributed storage technologies, provides high-capacity, high-performance, traceable, and verifiable data storage and access. The on-chain system,… More >

  • Open Access

    ARTICLE

    ASLP-DL —A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction

    Saba Awan1,*, Zahid Mehmood2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2535-2555, 2024, DOI:10.32604/cmc.2024.047337

    Abstract Highway safety researchers focus on crash injury severity, utilizing deep learning—specifically, deep neural networks (DNN), deep convolutional neural networks (D-CNN), and deep recurrent neural networks (D-RNN)—as the preferred method for modeling accident severity. Deep learning’s strength lies in handling intricate relationships within extensive datasets, making it popular for accident severity level (ASL) prediction and classification. Despite prior success, there is a need for an efficient system recognizing ASL in diverse road conditions. To address this, we present an innovative Accident Severity Level Prediction Deep Learning (ASLP-DL) framework, incorporating DNN, D-CNN, and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic… More >

Displaying 1-10 on page 1 of 343. Per Page