Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (333)
  • Open Access

    ARTICLE

    Multi-Perspective Data Fusion Framework Based on Hierarchical BERT: Provide Visual Predictions of Business Processes

    Yongwang Yuan1, Xiangwei Liu2,3,*, Ke Lu1,3

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1227-1252, 2024, DOI:10.32604/cmc.2023.046937

    Abstract Predictive Business Process Monitoring (PBPM) is a significant research area in Business Process Management (BPM) aimed at accurately forecasting future behavioral events. At present, deep learning methods are widely cited in PBPM research, but no method has been effective in fusing data information into the control flow for multi-perspective process prediction. Therefore, this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion. Firstly, the first layer BERT network learns the correlations between different category attribute data. Then, the attribute data is integrated into a weighted event-level feature vector and input into the second layer… More >

  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance problems. Furthermore, a quantile-based approach… More >

  • Open Access

    ARTICLE

    A New Vehicle Detection Framework Based on Feature-Guided in the Road Scene

    Tianmin Deng*, Xiyue Zhang, Xinxin Cheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 533-549, 2024, DOI:10.32604/cmc.2023.044639

    Abstract Vehicle detection plays a crucial role in the field of autonomous driving technology. However, directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar performance and slow inference speeds in vehicle detection. Achieving a balance between accuracy and detection speed is crucial for real-time object detection in real-world road scenes. This paper proposes a high-precision and fast vehicle detector called the feature-guided bidirectional pyramid network (FBPN). Firstly, to tackle challenges like vehicle occlusion and significant background interference, the efficient feature filtering module (EFFM) is introduced into the deep network, which amplifies the disparities between… More >

  • Open Access

    ARTICLE

    Human Gait Recognition for Biometrics Application Based on Deep Learning Fusion Assisted Framework

    Ch Avais Hanif1, Muhammad Ali Mughal1, Muhammad Attique Khan2,3,*, Nouf Abdullah Almujally4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 357-374, 2024, DOI:10.32604/cmc.2023.043061

    Abstract The demand for a non-contact biometric approach for candidate identification has grown over the past ten years. Based on the most important biometric application, human gait analysis is a significant research topic in computer vision. Researchers have paid a lot of attention to gait recognition, specifically the identification of people based on their walking patterns, due to its potential to correctly identify people far away. Gait recognition systems have been used in a variety of applications, including security, medical examinations, identity management, and access control. These systems require a complex combination of technical, operational, and definitional considerations. The employment of… More >

  • Open Access

    ARTICLE

    Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context

    Nadeem Salamat1, Muhammad Kamran1,2,*, Shahzaib Ashraf1, Manal Elzain Mohammed Abdulla3, Rashad Ismail3, Mohammed M. Al-Shamiri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1893-1933, 2024, DOI:10.32604/cmes.2023.044697

    Abstract The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy, accessibility, and cost-effectiveness. This paper investigates the potential applications of intuitionistic fuzzy sets (IFS) with rough sets in the context of sparse data. When it comes to capture uncertain information emanating from both upper and lower approximations, these intuitionistic fuzzy rough numbers (IFRNs) are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets, respectively. We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties. We present numerous… More > Graphic Abstract

    Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context

  • Open Access

    ARTICLE

    A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting Sites

    Tianming Zhang1, Zebin Chen1, Haonan Guo2, Bojun Ren1, Quanmin Xie3,*, Mengke Tian4,*, Yong Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2139-2154, 2024, DOI:10.32604/cmes.2023.043822

    Abstract The data analysis of blasting sites has always been the research goal of relevant researchers. The rise of mobile blasting robots has aroused many researchers’ interest in machine learning methods for target detection in the field of blasting. Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience, which has aroused people’s interest in how to use it in the field of machine learning. In this paper, we design a distributed machine learning training application based on the AWS Lambda platform. Based on data parallelism, the data aggregation and training synchronization… More >

  • Open Access

    ARTICLE

    Cybersecurity Threats Detection Using Optimized Machine Learning Frameworks

    Nadir Omer1,*, Ahmed H. Samak2, Ahmed I. Taloba3,4, Rasha M. Abd El-Aziz3,5

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 77-95, 2024, DOI:10.32604/csse.2023.039265

    Abstract Today’s world depends on the Internet to meet all its daily needs. The usage of the Internet is growing rapidly. The world is using the Internet more frequently than ever. The hazards of harmful attacks have also increased due to the growing reliance on the Internet. Hazards to cyber security are actions taken by someone with malicious intent to steal data, destroy computer systems, or disrupt them. Due to rising cyber security concerns, cyber security has emerged as the key component in the fight against all online threats, forgeries, and assaults. A device capable of identifying network irregularities and cyber-attacks… More >

  • Open Access

    PROCEEDINGS

    Damage Evaluation of Building Surface via Novel Deep Learning Framework

    Shan Xu1,*, Huadu Tang1, Ding Wang1, Ruiguang Zhu1, Liwei Wang1, Shengwang Hao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.09930

    Abstract Damage evaluation is an important index for the evaluation of buildings health. To provide a rapid crack evaluation in practical applications, a crack identification and damage evaluation via deep learning framework is proposed in this paper. We built a combined dataset from Kaggle and site photos. A pre-trained U-net model is used to perform the training of model. With updated weights, the identification of cracks could be performed on non-labelled photos. More >

  • Open Access

    PROCEEDINGS

    A Machine Learning Framework for Isogeometric Topology Optimization

    Haobo Zhang1, Ziao Zhuang1, Chen Yu2, Zhaohui Xia1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09091

    Abstract Topology optimization (TO) is an important and powerful tool to obtain efficient and lightweight structures in conceptional design stage and a series of representative methods are implemented [1-5]. TO are mainly based on the classical finite element analysis (FEA), resulting in an inconsistency between geometric model and analytical model. Besides, there are some drawbacks of low analysis accuracy, poor continuity between adjacent elements, and high computational cost for high-order meshes. Thus, isogeometric analysis (IGA) is proposed [6] to replace FEA in TO. Using the Non-Uniform Rational B-Splines (NURBS), IGA successfully eliminates the defects of the conventional FEA and forms a… More >

  • Open Access

    ARTICLE

    An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework

    Yuchen Zhou1, Hongtao Huo1, Zhiwen Hou1, Lingbin Bu1, Yifan Wang1, Jingyi Mao1, Xiaojun Lv2, Fanliang Bu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 537-563, 2024, DOI:10.32604/cmes.2023.044895

    Abstract Graph Convolutional Neural Networks (GCNs) have been widely used in various fields due to their powerful capabilities in processing graph-structured data. However, GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions, resulting in substantial distortions. Moreover, most of the existing GCN models are shallow structures, which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures. To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations, we propose… More >

Displaying 1-10 on page 1 of 333. Per Page