Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (416)
  • Open Access

    ARTICLE

    An Enhanced Task Migration Technique Based on Convolutional Neural Network in Machine Learning Framework

    Hamayun Khan1,*, Muhammad Atif Imtiaz2, Hira Siddique3, Muhammad Tausif Afzal Rana4, Arshad Ali5, Muhammad Zeeshan Baig6, Saif ur Rehman7, Yazed Alsaawy5

    Computer Systems Science and Engineering, Vol.49, pp. 317-331, 2025, DOI:10.32604/csse.2025.061118 - 19 March 2025

    Abstract The migration of tasks aided by machine learning (ML) predictions IN (DPM) is a system-level design technique that is used to reduce energy by enhancing the overall performance of the processor. In this paper, we address the issue of system-level higher task dissipation during the execution of parallel workloads with common deadlines by introducing a machine learning-based framework that includes task migration using energy-efficient earliest deadline first scheduling (EA-EDF). ML-based EA-EDF enhances the overall throughput and optimizes the energy to avoid delay and performance degradation in a multiprocessor system. The proposed system model allocates processors… More >

  • Open Access

    ARTICLE

    Enhancing Malware Detection Resilience: A U-Net GAN Denoising Framework for Image-Based Classification

    Huiyao Dong1, Igor Kotenko2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4263-4285, 2025, DOI:10.32604/cmc.2025.062439 - 06 March 2025

    Abstract The growing complexity of cyber threats requires innovative machine learning techniques, and image-based malware classification opens up new possibilities. Meanwhile, existing research has largely overlooked the impact of noise and obfuscation techniques commonly employed by malware authors to evade detection, and there is a critical gap in using noise simulation as a means of replicating real-world malware obfuscation techniques and adopting denoising framework to counteract these challenges. This study introduces an image denoising technique based on a U-Net combined with a GAN framework to address noise interference and obfuscation challenges in image-based malware analysis. The… More >

  • Open Access

    ARTICLE

    Robust Image Forgery Localization Using Hybrid CNN-Transformer Synergy Based Framework

    Sachin Sharma1,2,*, Brajesh Kumar Singh3, Hitendra Garg2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4691-4708, 2025, DOI:10.32604/cmc.2025.061252 - 06 March 2025

    Abstract Image tampering detection and localization have emerged as a critical domain in combating the pervasive issue of image manipulation due to the advancement of the large-scale availability of sophisticated image editing tools. The manual forgery localization is often reliant on forensic expertise. In recent times, machine learning (ML) and deep learning (DL) have shown promising results in automating image forgery localization. However, the ML-based method relies on hand-crafted features. Conversely, the DL method automatically extracts shallow spatial features to enhance the accuracy. However, DL-based methods lack the global co-relation of the features due to this… More >

  • Open Access

    ARTICLE

    A Novelty Framework in Image-Captioning with Visual Attention-Based Refined Visual Features

    Alaa Thobhani1,*, Beiji Zou1, Xiaoyan Kui1,*, Amr Abdussalam2, Muhammad Asim3, Mohammed ELAffendi3, Sajid Shah3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3943-3964, 2025, DOI:10.32604/cmc.2025.060788 - 06 March 2025

    Abstract Image captioning, the task of generating descriptive sentences for images, has advanced significantly with the integration of semantic information. However, traditional models still rely on static visual features that do not evolve with the changing linguistic context, which can hinder the ability to form meaningful connections between the image and the generated captions. This limitation often leads to captions that are less accurate or descriptive. In this paper, we propose a novel approach to enhance image captioning by introducing dynamic interactions where visual features continuously adapt to the evolving linguistic context. Our model strengthens the… More >

  • Open Access

    ARTICLE

    MSCM-Net: Rail Surface Defect Detection Based on a Multi-Scale Cross-Modal Network

    Xin Wen*, Xiao Zheng, Yu He

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4371-4388, 2025, DOI:10.32604/cmc.2025.060661 - 06 March 2025

    Abstract Detecting surface defects on unused rails is crucial for evaluating rail quality and durability to ensure the safety of rail transportation. However, existing detection methods often struggle with challenges such as complex defect morphology, texture similarity, and fuzzy edges, leading to poor accuracy and missed detections. In order to resolve these problems, we propose MSCM-Net (Multi-Scale Cross-Modal Network), a multiscale cross-modal framework focused on detecting rail surface defects. MSCM-Net introduces an attention mechanism to dynamically weight the fusion of RGB and depth maps, effectively capturing and enhancing features at different scales for each modality. To… More >

  • Open Access

    ARTICLE

    MARCS: A Mobile Crowdsensing Framework Based on Data Shapley Value Enabled Multi-Agent Deep Reinforcement Learning

    Yiqin Wang1, Yufeng Wang1,*, Jianhua Ma2, Qun Jin3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4431-4449, 2025, DOI:10.32604/cmc.2025.059880 - 06 March 2025

    Abstract Opportunistic mobile crowdsensing (MCS) non-intrusively exploits human mobility trajectories, and the participants’ smart devices as sensors have become promising paradigms for various urban data acquisition tasks. However, in practice, opportunistic MCS has several challenges from both the perspectives of MCS participants and the data platform. On the one hand, participants face uncertainties in conducting MCS tasks, including their mobility and implicit interactions among participants, and participants’ economic returns given by the MCS data platform are determined by not only their own actions but also other participants’ strategic actions. On the other hand, the platform can… More >

  • Open Access

    ARTICLE

    An AI-Enabled Framework for Transparency and Interpretability in Cardiovascular Disease Risk Prediction

    Isha Kiran1, Shahzad Ali2,3, Sajawal ur Rehman Khan4,5, Musaed Alhussein6, Sheraz Aslam7,8,*, Khursheed Aurangzeb6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5057-5078, 2025, DOI:10.32604/cmc.2025.058724 - 06 March 2025

    Abstract Cardiovascular disease (CVD) remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis, driven by risk factors such as hypertension, high cholesterol, and irregular pulse rates. Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors, making early detection difficult. In this research, we propose a novel artificial intelligence-enabled (AI-enabled) framework for CVD risk prediction that integrates machine learning (ML) with eXplainable AI (XAI) to provide both high-accuracy predictions and transparent, interpretable insights. Compared to existing studies that typically focus on either optimizing ML… More >

  • Open Access

    ARTICLE

    Smart Grid Security Framework for Data Transmissions with Adaptive Practices Using Machine Learning Algorithm

    Shitharth Selvarajan1,2,3,*, Hariprasath Manoharan4, Taher Al-Shehari5, Hussain Alsalman6, Taha Alfakih7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4339-4369, 2025, DOI:10.32604/cmc.2025.056100 - 06 March 2025

    Abstract This research presents an analysis of smart grid units to enhance connected units’ security during data transmissions. The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring, data expansion, control association, throughput, and losses. In addition, all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks. Moreover, the quantitative analysis of the optimization algorithm is discussed concerning two case studies, thereby achieving early convergence at reduced complexities. The suggested method ensures that each communication More >

  • Open Access

    ARTICLE

    DaC-GANSAEBF: Divide and Conquer-Generative Adversarial Network—Squeeze and Excitation-Based Framework for Spam Email Identification

    Tawfeeq Shawly1, Ahmed A. Alsheikhy2,*, Yahia Said3, Shaaban M. Shaaban3, Husam Lahza4, Aws I. AbuEid5, Abdulrahman Alzahrani6

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3181-3212, 2025, DOI:10.32604/cmes.2025.061608 - 03 March 2025

    Abstract Email communication plays a crucial role in both personal and professional contexts; however, it is frequently compromised by the ongoing challenge of spam, which detracts from productivity and introduces considerable security risks. Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers, resulting in user dissatisfaction and potential data breaches. To address this issue, we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework (DaC-GANSAEBF), an innovative deep-learning model designed to identify spam emails. This framework incorporates cutting-edge technologies, such as Generative Adversarial Networks (GAN), Squeeze and… More >

  • Open Access

    ARTICLE

    Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Kar Tim Chan1, Arun Kumar Sangaiah2,3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2585-2616, 2025, DOI:10.32604/cmes.2025.060548 - 03 March 2025

    Abstract This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms. The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments. The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency. A novel closed-form expression is also derived for a generalized asymptotic error variance steady state. Steady and convergence analyses are then presented for the synchronization, with frequency adaptations done using least More >

Displaying 1-10 on page 1 of 416. Per Page