Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (348)
  • Open Access

    ARTICLE

    A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting Sites

    Tianming Zhang1, Zebin Chen1, Haonan Guo2, Bojun Ren1, Quanmin Xie3,*, Mengke Tian4,*, Yong Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2139-2154, 2024, DOI:10.32604/cmes.2023.043822

    Abstract The data analysis of blasting sites has always been the research goal of relevant researchers. The rise of mobile blasting robots has aroused many researchers’ interest in machine learning methods for target detection in the field of blasting. Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience, which has aroused people’s interest in how to use it in the field of machine learning. In this paper, we design a distributed machine learning training application based on the AWS Lambda platform. Based on data parallelism, the data aggregation and training synchronization… More >

  • Open Access

    ARTICLE

    Cybersecurity Threats Detection Using Optimized Machine Learning Frameworks

    Nadir Omer1,*, Ahmed H. Samak2, Ahmed I. Taloba3,4, Rasha M. Abd El-Aziz3,5

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 77-95, 2024, DOI:10.32604/csse.2023.039265

    Abstract Today’s world depends on the Internet to meet all its daily needs. The usage of the Internet is growing rapidly. The world is using the Internet more frequently than ever. The hazards of harmful attacks have also increased due to the growing reliance on the Internet. Hazards to cyber security are actions taken by someone with malicious intent to steal data, destroy computer systems, or disrupt them. Due to rising cyber security concerns, cyber security has emerged as the key component in the fight against all online threats, forgeries, and assaults. A device capable of identifying network irregularities and cyber-attacks… More >

  • Open Access

    PROCEEDINGS

    Damage Evaluation of Building Surface via Novel Deep Learning Framework

    Shan Xu1,*, Huadu Tang1, Ding Wang1, Ruiguang Zhu1, Liwei Wang1, Shengwang Hao1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.09930

    Abstract Damage evaluation is an important index for the evaluation of buildings health. To provide a rapid crack evaluation in practical applications, a crack identification and damage evaluation via deep learning framework is proposed in this paper. We built a combined dataset from Kaggle and site photos. A pre-trained U-net model is used to perform the training of model. With updated weights, the identification of cracks could be performed on non-labelled photos. More >

  • Open Access

    PROCEEDINGS

    A Machine Learning Framework for Isogeometric Topology Optimization

    Haobo Zhang1, Ziao Zhuang1, Chen Yu2, Zhaohui Xia1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09091

    Abstract Topology optimization (TO) is an important and powerful tool to obtain efficient and lightweight structures in conceptional design stage and a series of representative methods are implemented [1-5]. TO are mainly based on the classical finite element analysis (FEA), resulting in an inconsistency between geometric model and analytical model. Besides, there are some drawbacks of low analysis accuracy, poor continuity between adjacent elements, and high computational cost for high-order meshes. Thus, isogeometric analysis (IGA) is proposed [6] to replace FEA in TO. Using the Non-Uniform Rational B-Splines (NURBS), IGA successfully eliminates the defects of the conventional FEA and forms a… More >

  • Open Access

    ARTICLE

    An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework

    Yuchen Zhou1, Hongtao Huo1, Zhiwen Hou1, Lingbin Bu1, Yifan Wang1, Jingyi Mao1, Xiaojun Lv2, Fanliang Bu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 537-563, 2024, DOI:10.32604/cmes.2023.044895

    Abstract Graph Convolutional Neural Networks (GCNs) have been widely used in various fields due to their powerful capabilities in processing graph-structured data. However, GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions, resulting in substantial distortions. Moreover, most of the existing GCN models are shallow structures, which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures. To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations, we propose… More >

  • Open Access

    ARTICLE

    Nuclei Segmentation in Histopathology Images Using Structure-Preserving Color Normalization Based Ensemble Deep Learning Frameworks

    Manas Ranjan Prusty1, Rishi Dinesh2, Hariket Sukesh Kumar Sheth2, Alapati Lakshmi Viswanath2, Sandeep Kumar Satapathy2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3077-3094, 2023, DOI:10.32604/cmc.2023.042718

    Abstract This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin (H&E) stained histopathology images. The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols, as well as the segmentation of variable-sized and overlapping nuclei. To this extent, the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks (CNN) architectures as encoder backbones, along with stain normalization and test time augmentation, to improve segmentation accuracy.… More >

  • Open Access

    ARTICLE

    DNEF: A New Ensemble Framework Based on Deep Network Structure

    Siyu Yang1, Ge Song1,*, Yuqiao Deng2, Changyu Liu1, Zhuoyu Ou1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 4055-4072, 2023, DOI:10.32604/cmc.2023.042277

    Abstract Deep neural networks have achieved tremendous success in various fields, and the structure of these networks is a key factor in their success. In this paper, we focus on the research of ensemble learning based on deep network structure and propose a new deep network ensemble framework (DNEF). Unlike other ensemble learning models, DNEF is an ensemble learning architecture of network structures, with serial iteration between the hidden layers, while base classifiers are trained in parallel within these hidden layers. Specifically, DNEF uses randomly sampled data as input and implements serial iteration based on the weighting strategy between hidden layers.… More >

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road… More >

  • Open Access

    ARTICLE

    An Evidence-Based CoCoSo Framework with Double Hierarchy Linguistic Data for Viable Selection of Hydrogen Storage Methods

    Raghunathan Krishankumar1, Dhruva Sundararajan2, K. S. Ravichandran2, Edmundas Kazimieras Zavadskas3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2845-2872, 2024, DOI:10.32604/cmes.2023.029438

    Abstract Hydrogen is the new age alternative energy source to combat energy demand and climate change. Storage of hydrogen is vital for a nation’s growth. Works of literature provide different methods for storing the produced hydrogen, and the rational selection of a viable method is crucial for promoting sustainability and green practices. Typically, hydrogen storage is associated with diverse sustainable and circular economy (SCE) criteria. As a result, the authors consider the situation a multi-criteria decision-making (MCDM) problem. Studies infer that previous models for hydrogen storage method (HSM) selection (i) do not consider preferences in the natural language form; (ii) weights… More >

  • Open Access

    ARTICLE

    MF2-DMTD: A Formalism and Game-Based Reasoning Framework for Optimized Drone-Type Moving Target Defense

    Sang Seo1, Jaeyeon Lee2, Byeongjin Kim2, Woojin Lee2, Dohoon Kim3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2595-2628, 2023, DOI:10.32604/cmc.2023.042668

    Abstract Moving-target-defense (MTD) fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations. However, the existing naive MTD studies were conducted focusing only on wired network mutations. And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations, such as hostility, mobility, and dependency. Therefore, to solve these conceptual limitations, this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle… More >

Displaying 21-30 on page 3 of 348. Per Page