Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (313)
  • Open Access

    ARTICLE

    Overall Assessment of Heat Transfer for a Rarefied Flow in a Microchannel with Obstacles Using Lattice Boltzmann Method

    Siham Hammid1, Khatir Naima2, Omolayo M. Ikumapayi3, Cheikh Kezrane1, Abdelkrim Liazid4, Jihad Asad5, Mokdad Hayawi Rahman6, Farhan Lafta Rashid7, Naseer Ali Hussien8, Younes Menni2,9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 273-299, 2024, DOI:10.32604/cmes.2023.028951

    Abstract The objective of this investigation is to assess the effect of obstacles on numerical heat transfer and fluid flow momentum in a rectangular microchannel (MC). Two distinct configurations were studied: one without obstacles and the other with alternating obstacles placed on the upper and lower walls. The research utilized the thermal lattice Boltzmann method (LBM), which solves the energy and momentum equations of fluids with the BGK approximation, implemented in a Python coding environment. Temperature jump and slip velocity conditions were utilized in the simulation for the MC and extended to all obstacle boundaries. The study aims to analyze the… More >

  • Open Access

    ARTICLE

    On the Effect of Mist Flow on the Heat Transfer Performances of a Three-CopperSphere Configuration

    Karema A. Hamad*, Yasser A. Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2863-2875, 2023, DOI:10.32604/fdmp.2023.029049

    Abstract The cooling of a (pebble bed) spent fuel in a high-temperature gas-cooled reactor (HTGR) is adversely affected by an increase in the temperature of the used gas (air). To investigate this problem, a configuration consisting of three copper spheres arranged in tandem subjected to a forced mist flow inside a cylindrical channel is considered. The heat transfer coefficients and related variations as a function of Reynolds number are investigated accordingly. The experimental results show that when compared to those with only airflow, the heat transfer coefficient of the spherical elements with mist flow (j = 112 kg/m2 hr, Re =… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of a Shell-and-Tube Heat Exchanger

    Juanjuan Wang*, Jiangping Nan, Yanan Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2761-2775, 2023, DOI:10.32604/fdmp.2023.021175

    Abstract The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger (STHE). In order to do so, a simulation model is introduced that takes into account the related gas-phase circulation. Then, simulation verification experiments are designed in order to validate the model. The results show that the temperature field undergoes strong variations in time when an inlet wind speed of 6 m/s is considered, while the heat transfer error reaches a minimum of 5.1%. For an inlet velocity of 9 m/s, the heat transfer drops to the lowest point, while the heat transfer error reaches a… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Characteristics of Heat Transfer of Methanation in Fluidized Bed for Pyrolysis and Gasification Syngas of Organic Solid Waste

    Danyang Shao1, Xiaojia Wang1,*, Delu Chen1, Fengxia An1,2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3659-3680, 2023, DOI:10.32604/jrm.2023.029220

    Abstract Methanation is an effective way to efficiently utilize product gas generated from the pyrolysis and gasification of organic solid wastes. To deeply study the heat transfer and mass transfer mechanisms in the reactor, a successful three-dimensional comprehensive model has been established. Multiphase flow behavior and heat transfer mechanisms were investigated under reference working conditions. Temperature is determined by the heat release of the reaction and the heat transfer of the gas-solid flow. The maximum temperature can reach 951 K where the catalyst gathers. In the simulation, changes in the gas inlet velocity and catalyst flow rate were made to explore… More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation. The ODEs are dealt with… More >

  • Open Access

    ARTICLE

    MHD FLOW AND HEAT TRANSFER IN A WILLIAMSON FLUID FROM A VERTICAL PERMEABLE CONE WITH THERMAL AND MOMENTUM SLIP EFFECTS: A MATHEMATICAL STUDY

    CH. Amanullaa,b,* , N. Nagendraa , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.40

    Abstract A theoretical and computational study of the magneto hydrodynamic flow and free convection heat transfer in an electro-conductive polymer on the external surface of a vertical permeable cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical permeable cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The non-dimensional, transformed boundary layer equations for momentum and energy are solved with the second order accurate implicit Keller box finite difference method under appropriate boundary conditions. Validation of the numerical solutions is achieved via benchmarking… More >

  • Open Access

    ARTICLE

    MAGNETOCONVECTION AND IRREVERSIBILITY PHENOMENA WITHIN A LID DRIVEN CAVITY FILLED WITH LIQUID METAL UNDER MAGNETIC FIELD

    Fakher Oueslatia,b,†, Brahim Ben-Beyab

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.38

    Abstract The current study deals with a numerical investigation of magnetoconvection and entropy generation within a lid driven square cavity subject to uniform magnetic field and filled with liquid metal. Effects of multiple parameters namely; the Prandtl, Hartmann and Richardson numbers were predicted and analyzed using a numerical methodology based on the finite volume method and a full multigrid technique. The numerical outcome of the present study shows that, the enhancement of Hartmann number declines the heat transfer rate for all liquid metals considered. Moreover, it is observed that augmenting the Richardson number leads to acceleration of the flow with a… More >

  • Open Access

    ARTICLE

    3D NUMERICAL INVESTIGATION ON LAMINAR FORCED CONVECTION AND HEAT TRANSFER IN A CIRCULAR TUBE INSERTED WITH RIGHT TRIANGULAR WAVY SURFACES

    Withada Jedsadaratanachaia, Amnart Boonloib,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.35

    Abstract Numerical investigations on flow and heat transfer characteristics in a circular tube heat exchanger inserted with right triangular wavy surfaces are reported. The configurations of the wavy surfaces; incline and V-shape, are studied with flow attack angles of 30o, 45o and 60o for the Reynolds numbers, Re = 100 – 2000. The numerical results are compared with the smooth circular tube. The mechanisms on flow and heat transfer in the tube heat exchanger with the wavy surface are presented. As the results, the wavy surface can generate the vortex flow and impinging flow through the test section that helps to… More >

  • Open Access

    ARTICLE

    THERMO-GEOMETRIC PARAMETER EFFECTS ON CONVECTIVELY COOLED INHOMOGENEOUS RECTANGULAR FIN

    Ernest Léontin Lemouboua , Hervé Thierry Tagne Kamdema,* , Jean Roger Bogningb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.34

    Abstract Numerical experiments involving heat transfer were performed to analyze the influence of both fin thermo-geometric parameter and cooling boundary conditions on the temperature distribution and the efficiency of convective cooled inhomogeneous rectangular fin. The inhomogeneity of the fin is due to both temperature dependent thermal conductivity and convection heat coefficients. The analysis was facilitated by the use of the differential transformation method, which can solve nonlinear differential equation. A specific application is first made for temperature/efficiency homogeneous fin predictions and the results are in excellent agreement with standard exact results. Predictions of inhomogeneous fin temperature and efficiency for three different… More >

  • Open Access

    ARTICLE

    EFFECTS OF BUOYANCY PARAMETER ON UNSTEADY 3D DOUBLE DIFFUSIVE CONVECTION IN MOLTEN PB-SN ALLOYS

    Maatki Chemseddinea , Hakan F. Oztopb,c,*, Lioua Kolsia,d, Abdullah A.A.A. Al-Rashede , Mohamed Naceur Borjinia , Nidal Abu-Hamdehc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.33

    Abstract A computational study has been made for a three dimensional double diffusive convection with molten Pb-Sn by using finite volume method. In this work, two vertical walls have different temperature and different concentration while remaining walls are adiabatic. Buoyancy ratio, which changes between N = -0.1 and -10, is the main governing parameter during work. Other parameters are taken as fixed with Pr = 0.02, Le = 7500 and Ra = 5×103 . It is found that changing of buoyancy parameter becomes more effective on heat transfer than that of mass transfer. More >

Displaying 1-10 on page 1 of 313. Per Page