Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (441)
  • Open Access

    ARTICLE

    Heat Transfer Area Optimization for Heat Exchanger System

    Yu-Cheng Liao1, Fu-I Chou1,*, Po-Yuan Yang2, Jyh-Horng Chou3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 335-349, 2025, DOI:10.32604/cmes.2025.062228 - 11 April 2025

    Abstract This paper presents an allowable-tolerance-based group search optimization (AT-GSO), which combines the robust GSO (R-GSO) and the external quality design planning of the Taguchi method. AT-GSO algorithm is used to optimize the heat transfer area of the heat exchanger system. The R-GSO algorithm integrates the GSO algorithm with the Taguchi method, utilizing the Taguchi method to determine the optimal producer in each iteration of the GSO algorithm to strengthen the robustness of the search process and the ability to find the global optima. In conventional parameter design optimization, it is typically assumed that the designed… More >

  • Open Access

    ARTICLE

    Flow and Heat Transfer Characteristics of Natural Gas Hydrate Riser Transportation

    Chenhong Li1, Guojin Han1, Hua Zhong1, Chao Zhang1, Rui Zhang2, Jonggeun Choe3, Chen Xing2, Xuewen Cao2, Jiang Bian4,*

    Energy Engineering, Vol.122, No.4, pp. 1287-1309, 2025, DOI:10.32604/ee.2025.060970 - 31 March 2025

    Abstract Extracted natural gas hydrate is a multi-phase and multi-component mixture, and its complex composition poses significant challenges for transmission and transportation, including phase changes following extraction and sediment deposition within the pipeline. This study examines the flow and heat transfer characteristics of hydrates in a riser, focusing on the multi-phase flow behavior of natural gas hydrate in the development riser. Additionally, the effects of hydrate flow and seawater temperature on heat exchange are analyzed by simulating the ambient temperature conditions of the South China Sea. The findings reveal that the increase in unit pressure drop… More >

  • Open Access

    ARTICLE

    Inertial-Wave Regime of Averaged Thermal Convection in a Rotating Vertical Flat Layer

    Kirill Rysin*, Alexey Vjatkin, Victor Kozlov

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 605-621, 2025, DOI:10.32604/fdmp.2025.061722 - 01 April 2025

    Abstract Thermal vibrational convection (TVC) refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields. It serves as an effective mechanism for heat transfer control, particularly under microgravity conditions. A key challenge in this field is understanding the effect of rotation on TVC, as fluid oscillations in rotating systems exhibit unique and specific characteristics. In this study, we examine TVC in a vertical flat layer with boundaries at different temperatures, rotating around a horizontal axis. The distinctive feature of this study is that the fluid oscillations within the cavity are not induced… More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Influence of Liquid Cooling Flow Space on the Assessment of Thermal Management of PEMFC

    Abubakar Unguwanrimi Yakubu1,2,4, Jiahao Zhao1, Qi Jiang1, Xuanhong Ye1, Junyi Liu1, Qinglong Yu1, Shusheng Xiong1,3,4,*

    Energy Engineering, Vol.122, No.3, pp. 1025-1051, 2025, DOI:10.32604/ee.2025.057680 - 07 March 2025

    Abstract This study uses numerical simulations of liquid cooling flow fields to investigate polymer exchange membrane fuel cell (PEMFC) thermal control. The research shows that the optimum cooling channel design significantly reduces the fuel cell’s temperature differential, improving overall efficiency. Specifically, the simulations show a reduction in the maximum temperature by up to 15% compared to traditional designs. Additionally, according to analysis, the Nusselt number rises by 20% with the implementation of serpentine flow patterns, leading to enhanced heat transfer rates. The findings demonstrate that effective cooling strategies can lead to a 10% increase in fuel More >

  • Open Access

    ARTICLE

    Enhanced Boiling Heat Transfer in Water Pools with Perforated Copper Beads and Sodium Dodecyl Sulfate Surfactant

    Pengcheng Cai1,2, Teng Li3, Jianxin Xu1,2,*, Xiaobo Li3, Zhiqiang Li1,2, Zhiwen Xu3, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 325-349, 2025, DOI:10.32604/fdmp.2024.057496 - 06 March 2025

    Abstract In modern engineering, enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials. This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate (SDS) surfactant in saturated deionized water. Experiments were conducted at standard atmospheric pressure, with heat flux ranging from 20 to 100 kW/m2. The heating surface, positioned below the layer of freely moving copper beads, allowed the particle layer to shift due to liquid convection and steam More > Graphic Abstract

    Enhanced Boiling Heat Transfer in Water Pools with Perforated Copper Beads and Sodium Dodecyl Sulfate Surfactant

  • Open Access

    ARTICLE

    Experimental Study of Forced Convective Heat Transfer in a Copper Tube Using Three Types of Nanofluids

    Zahraa N. Hussain1,*, Jamal M. Ali1,*, Hasan S. Majdi2, Abbas J. Sultan1, H. Al-Naseri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 351-370, 2025, DOI:10.32604/fdmp.2024.056292 - 06 March 2025

    Abstract The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances. This study investigates experimentally the turbulent convective heat transfer characteristics of water-based nanofluids containing TiO2, CuO, and graphene nanoplatelet (GNP) nanoparticles as they flow through a copper tube. Both the dynamic viscosity and thermal conductivity of these nanofluids were modeled and experimentally measured across varying nanoparticle concentrations (0.01, 0.02, and 0.03 vol.%) and temperatures (25°C, 35°C, and 45°C). The findings indicate that the behavior of nanofluids depends on the parameter used for comparison with the base fluid. Notably, both More > Graphic Abstract

    Experimental Study of Forced Convective Heat Transfer in a Copper Tube Using Three Types of Nanofluids

  • Open Access

    ARTICLE

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

    Abdelilah Makaoui1, El Bachir Lahmer1,*, Jaouad Benhamou1,2, Mohammed Amine Moussaoui1, Ahmed Mezrhab1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 207-230, 2025, DOI:10.32604/fhmt.2024.060166 - 26 February 2025

    Abstract This study focuses on numerically investigating thermal behavior within a differentially heated cavity filled with nanofluid with and without obstacles. Numerical comparison with previous studies proves the consistency and efficacy of the lattice Boltzmann method associated with a single relaxation time and its possibility of studying the nanofluid and heat transfer with high accuracy. Key parameters, including nanoparticle type and concentration, Rayleigh number, fluid basis, and obstacle position and dimension, were examined to identify optimal conditions for enhancing heat transfer quality. Principal findings indicated that increasing the Rayleigh number boosts buoyancy forces and alters vortex More > Graphic Abstract

    Thermal Assessment of a Differentially Heated Nanofluid-Filled Cavity Containing an Obstacle

  • Open Access

    ARTICLE

    Effect of Surface Wettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe

    Wei Zhang*, Haojie Chen, Kunyu Cheng, Yulong Zhang

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 361-381, 2025, DOI:10.32604/fhmt.2025.059837 - 26 February 2025

    Abstract The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes (PHPs) under three modified surfaces (superhydrophilic evaporation section paired with superhydrophilic, superhydrophobic, and hybrid condensation section). The Volume of Fluid (VOF) model was utilized to capture the phase-change process within the PHPs. The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes. The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the… More > Graphic Abstract

    Effect of Surface Wettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe

  • Open Access

    ARTICLE

    Numerical Investigation of the Influence of a Magnetic Field on the Laminar Flow of a Yield-Stress Nanofluid over a Backward Facing Step

    Karim Amrani1,*, Eugenia Rossi di Schio2,*, Mohamed Bouzit3, Abderrahim Mokhefi1,4, Abdelkader Aris1, Cherif Belhout3, Paolo Valdiserri2

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 185-206, 2025, DOI:10.32604/fhmt.2025.059833 - 26 February 2025

    Abstract The present study focuses on the flow of a yield-stress (Bingham) nanofluid, consisting of suspended Fe3O4 nanoparticles, subjected to a magnetic field in a backward-facing step duct (BFS) configuration. The duct is equipped with a cylindrical obstacle, where the lower wall is kept at a constant temperature. The yield-stress nanofluid enters this duct at a cold temperature with fully developed velocity. The aim of the present investigation is to explore the influence of flow velocity (Re = 10 to 200), nanoparticle concentration ( = 0 to 0.1), magnetic field intensity (Ha = 0 to 100), and… More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Flow and Heat Transfer in Novel Circumfluent Cyclone Separator during High-Temperature Converter Gas Recovery

    Ziyi Wang1,2, Sen Li1,2,*, Xiaolin Wei1,2, Jing Zhao1, Bo Li1, Yuan Yao1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 163-184, 2025, DOI:10.32604/fhmt.2024.059740 - 26 February 2025

    Abstract In the novel fully dry converter gas recovery process, a novel circumfluent cyclone separator with an evaporation heating surface can simultaneously realize the dust removal and sensible heat recovery of converter gas. For this equipment, the distributions of internal flow and wall heat transfer affect the efficiency of dust removal and sensible heat recovery. In this study, based on on-site operation tests, the distributions of internal flow and wall heat transfer in the circumfluent cyclone separator are studied by numerical simulation. The results indicate that the flow rate proportions in different regions of the circumfluent More >

Displaying 1-10 on page 1 of 441. Per Page