Christine Dewi1,2, Melati Viaeritas Vitrieco Santoso1, Hanna Prillysca Chernovita3, Evangs Mailoa1, Stephen Abednego Philemon1, Abbott Po Shun Chen4,*
CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5361-5379, 2025, DOI:10.32604/cmc.2025.067381
- 30 July 2025
Abstract Early detection of Forest and Land Fires (FLF) is essential to prevent the rapid spread of fire as well as minimize environmental damage. However, accurate detection under real-world conditions, such as low light, haze, and complex backgrounds, remains a challenge for computer vision systems. This study evaluates the impact of three image enhancement techniques—Histogram Equalization (HE), Contrast Limited Adaptive Histogram Equalization (CLAHE), and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke. The D-Fire dataset, consisting of 21,527 annotated images captured under diverse environmental scenarios… More >