Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism

    Tuğba Çelikten1, Aytuğ Onan2,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3351-3377, 2024, DOI:10.32604/cmc.2024.051574

    Abstract The purpose of this study is to develop a reliable method for distinguishing between AI-generated, paraphrased, and human-written texts, which is crucial for maintaining the integrity of research and ensuring accurate information flow in critical fields such as healthcare. To achieve this, we propose HybridGAD, a novel hybrid model that combines Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Bidirectional Gated Recurrent Unit (Bi-GRU) architectures with an attention mechanism. Our methodology involves training this hybrid model on a dataset of radiology abstracts, encompassing texts generated by AI, paraphrased by AI, and written by humans. The… More >

  • Open Access

    ARTICLE

    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

  • Open Access

    ARTICLE

    An Enhanced Hybrid Model Based on CNN and BiLSTM for Identifying Individuals via Handwriting Analysis

    Md. Abdur Rahim1, Fahmid Al Farid2, Abu Saleh Musa Miah3, Arpa Kar Puza1, Md. Nur Alam4, Md. Najmul Hossain5, Sarina Mansor2, Hezerul Abdul Karim2,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1689-1710, 2024, DOI:10.32604/cmes.2024.048714

    Abstract Handwriting is a unique and significant human feature that distinguishes them from one another. There are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through verification. However, such systems are susceptible to forgery, posing security risks. In response to these challenges, we propose an innovative hybrid technique for individual identification based on independent handwriting, eliminating the reliance on specific signatures or symbols. In response to these challenges, we propose an innovative hybrid technique for individual identification based on independent handwriting, eliminating the reliance on specific signatures… More >

  • Open Access

    ARTICLE

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

    Ming Yan1, Caijiang Lu2,*, Pan Shi1,*, Meiling Zhang3, Jiawei Zhang1, Liang Wang1

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 615-631, 2024, DOI:10.32604/fhmt.2024.048333

    Abstract In response to escalating challenges in energy conservation and emission reduction, this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers. Utilizing a fusion of hybrid modeling and automation technologies, we develop soft measurement models for key combustion parameters, such as the net calorific value of coal, flue gas oxygen content, and fly ash carbon content, within the Distributed Control System (DCS). Validated with performance test data, these models exhibit controlled root mean square error (RMSE) and maximum absolute error (MAXE) values, both within the… More > Graphic Abstract

    Optimizing Two-Phase Flow Heat Transfer: DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers

  • Open Access

    ARTICLE

    A Hybrid Model for Improving Software Cost Estimation in Global Software Development

    Mehmood Ahmed1,3,*, Noraini B. Ibrahim1, Wasif Nisar2, Adeel Ahmed3, Muhammad Junaid3,*, Emmanuel Soriano Flores4, Divya Anand4

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1399-1422, 2024, DOI:10.32604/cmc.2023.046648

    Abstract Accurate software cost estimation in Global Software Development (GSD) remains challenging due to reliance on historical data and expert judgments. Traditional models, such as the Constructive Cost Model (COCOMO II), rely heavily on historical and accurate data. In addition, expert judgment is required to set many input parameters, which can introduce subjectivity and variability in the estimation process. Consequently, there is a need to improve the current GSD models to mitigate reliance on historical data, subjectivity in expert judgment, inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns. This… More >

  • Open Access

    ARTICLE

    An Effective Hybrid Model of ELM and Enhanced GWO for Estimating Compressive Strength of Metakaolin-Contained Cemented Materials

    Abidhan Bardhan1,*, Raushan Kumar Singh2, Mohammed Alatiyyah3, Sulaiman Abdullah Alateyah4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1521-1555, 2024, DOI:10.32604/cmes.2023.044467

    Abstract This research proposes a highly effective soft computing paradigm for estimating the compressive strength (CS) of metakaolin-contained cemented materials. The proposed approach is a combination of an enhanced grey wolf optimizer (EGWO) and an extreme learning machine (ELM). EGWO is an augmented form of the classic grey wolf optimizer (GWO). Compared to standard GWO, EGWO has a better hunting mechanism and produces an optimal performance. The EGWO was used to optimize the ELM structure and a hybrid model, ELM-EGWO, was built. To train and validate the proposed ELM-EGWO model, a sum of 361 experimental results… More >

  • Open Access

    REVIEW

    Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models

    Weisi Chen1,*, Walayat Hussain2,*, Francesco Cauteruccio3, Xu Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 187-224, 2024, DOI:10.32604/cmes.2023.031388

    Abstract Financial time series prediction, whether for classification or regression, has been a heated research topic over the last decade. While traditional machine learning algorithms have experienced mediocre results, deep learning has largely contributed to the elevation of the prediction performance. Currently, the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking, making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better, what techniques and components are involved, and how the model can be designed and implemented. This review article provides an… More > Graphic Abstract

    Deep Learning for Financial Time Series Prediction: A State-of-the-Art Review of Standalone and Hybrid Models

  • Open Access

    REVIEW

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

    Baydaa Abdul Kareem1,2, Salah L. Zubaidi2,3, Nadhir Al-Ansari4,*, Yousif Raad Muhsen2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.027954

    Abstract Forecasting river flow is crucial for optimal planning, management, and sustainability using freshwater resources. Many machine learning (ML) approaches have been enhanced to improve streamflow prediction. Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches. Current researchers have also emphasised using hybrid models to improve forecast accuracy. Accordingly, this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years, summarising data preprocessing, univariate machine learning modelling strategy, advantages and disadvantages of standalone ML… More > Graphic Abstract

    Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow

  • Open Access

    ARTICLE

    Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit

    Yinghua Song1,2, Hairong Lyu1,2, Wei Zhang1,2,*

    Journal on Big Data, Vol.5, pp. 19-40, 2023, DOI:10.32604/jbd.2023.038249

    Abstract A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation, assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation. First, the passenger flow sequence models in the study are broken down using VMD for noise reduction. The objective environment features are then added to the characteristic factors that affect the passenger flow. The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm. It is shown that the hybrid model VMD-CLSMT has a More >

  • Open Access

    ARTICLE

    A Novel Method in Wood Identification Based on Anatomical Image Using Hybrid Model

    Nguyen Minh Trieu, Nguyen Truong Thinh*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2381-2396, 2023, DOI:10.32604/csse.2023.040030

    Abstract Nowadays, wood identification is made by experts using hand lenses, wood atlases, and field manuals which take a lot of cost and time for the training process. The quantity and species must be strictly set up, and accurate identification of the wood species must be made during exploitation to monitor trade and enforce regulations to stop illegal logging. With the development of science, wood identification should be supported with technology to enhance the perception of fairness of trade. An automatic wood identification system and a dataset of 50 commercial wood species from Asia are established,… More >

Displaying 1-10 on page 1 of 34. Per Page