Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (466)
  • Open Access

    ARTICLE

    Semi-Supervised Segmentation Framework for Quantitative Analysis of Material Microstructure Images

    Yingli Liu1,2, Weiyong Tang1,2, Xiao Yang1,2, Jiancheng Yin3,*, Haihe Zhou1,2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.074681 - 10 February 2026

    Abstract Quantitative analysis of aluminum-silicon (Al-Si) alloy microstructure is crucial for evaluating and controlling alloy performance. Conventional analysis methods rely on manual segmentation, which is inefficient and subjective, while fully supervised deep learning approaches require extensive and expensive pixel-level annotated data. Furthermore, existing semi-supervised methods still face challenges in handling the adhesion of adjacent primary silicon particles and effectively utilizing consistency in unlabeled data. To address these issues, this paper proposes a novel semi-supervised framework for Al-Si alloy microstructure image segmentation. First, we introduce a Rotational Uncertainty Correction Strategy (RUCS). This strategy employs multi-angle rotational perturbations… More >

  • Open Access

    ARTICLE

    A Unified Feature Selection Framework Combining Mutual Information and Regression Optimization for Multi-Label Learning

    Hyunki Lim*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074138 - 10 February 2026

    Abstract High-dimensional data causes difficulties in machine learning due to high time consumption and large memory requirements. In particular, in a multi-label environment, higher complexity is required as much as the number of labels. Moreover, an optimization problem that fully considers all dependencies between features and labels is difficult to solve. In this study, we propose a novel regression-based multi-label feature selection method that integrates mutual information to better exploit the underlying data structure. By incorporating mutual information into the regression formulation, the model captures not only linear relationships but also complex non-linear dependencies. The proposed… More >

  • Open Access

    ARTICLE

    ES-YOLO: Edge and Shape Fusion-Based YOLO for Traffic Sign Detection

    Weiguo Pan1, Songjie Du2,*, Bingxin Xu1, Bin Zhang1, Hongzhe Liu1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073599 - 10 February 2026

    Abstract Traffic sign detection is a critical component of driving systems. Single-stage network-based traffic sign detection algorithms, renowned for their fast detection speeds and high accuracy, have become the dominant approach in current practices. However, in complex and dynamic traffic scenes, particularly with smaller traffic sign objects, challenges such as missed and false detections can lead to reduced overall detection accuracy. To address this issue, this paper proposes a detection algorithm that integrates edge and shape information. Recognizing that traffic signs have specific shapes and distinct edge contours, this paper introduces an edge feature extraction branch More >

  • Open Access

    ARTICLE

    Mitigating Adversarial Obfuscation in Named Entity Recognition with Robust SecureBERT Finetuning

    Nouman Ahmad1,*, Changsheng Zhang1, Uroosa Sehar2,3,4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073029 - 10 February 2026

    Abstract Although Named Entity Recognition (NER) in cybersecurity has historically concentrated on threat intelligence, vital security data can be found in a variety of sources, such as open-source intelligence and unprocessed tool outputs. When dealing with technical language, the coexistence of structured and unstructured data poses serious issues for traditional BERT-based techniques. We introduce a three-phase approach for improved NER in multi-source cybersecurity data that makes use of large language models (LLMs). To ensure thorough entity coverage, our method starts with an identification module that uses dynamic prompting techniques. To lessen hallucinations, the extraction module uses… More >

  • Open Access

    ARTICLE

    LLM-Powered Multimodal Reasoning for Fake News Detection

    Md. Ahsan Habib1, Md. Anwar Hussen Wadud2, M. F. Mridha3,*, Md. Jakir Hossen4,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.070235 - 10 February 2026

    Abstract The problem of fake news detection (FND) is becoming increasingly important in the field of natural language processing (NLP) because of the rapid dissemination of misleading information on the web. Large language models (LLMs) such as GPT-4. Zero excels in natural language understanding tasks but can still struggle to distinguish between fact and fiction, particularly when applied in the wild. However, a key challenge of existing FND methods is that they only consider unimodal data (e.g., images), while more detailed multimodal data (e.g., user behaviour, temporal dynamics) is neglected, and the latter is crucial for… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Monitoring and Assessment of Groundwater Quality for Domestic and Agricultural Use in Kurukshetra District, Haryana, India

    Aakash Deep*, Sushil Kumar, Bhagwan Singh Chaudhary

    Revue Internationale de Géomatique, Vol.35, pp. 79-100, 2026, DOI:10.32604/rig.2026.074969 - 05 February 2026

    Abstract The assessment of groundwater quality is crucial for ensuring its safe and sustainable use for domestic and agricultural purposes. The Kurukshetra district in the Indian state of Haryana relies heavily on groundwater to meet household and agricultural needs. Sustainable groundwater management must be assessed in terms of suitability for domestic and agricultural needs in a region. The current study analyzed pre-monsoon geochemical data from groundwater samples in the study area for 1991, 2000, 2010, and 2020. A Geographic Information System (GIS) was used to create spatial distribution maps for hydrogen ion concentration, total hardness, total… More >

  • Open Access

    ARTICLE

    Predictive Maintenance Strategy for Photovoltaic Power Systems: Collaborative Optimization of Transformer-Based Lifetime Prediction and Opposition-Based Learning HHO Algorithm

    Wei Chen, Yang Wu*, Tingting Pei, Jie Lin, Guojing Yuan

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070905 - 27 January 2026

    Abstract In view of the insufficient utilization of condition-monitoring information and the improper scheduling often observed in conventional maintenance strategies for photovoltaic (PV) modules, this study proposes a predictive maintenance (PdM) strategy based on Remaining Useful Life (RUL) estimation. First, a RUL prediction model is established using the Transformer architecture, which enables the effective processing of sequential degradation data. By employing the historical degradation data of PV modules, the proposed model provides accurate forecasts of the remaining useful life, thereby supplying essential inputs for maintenance decision-making. Subsequently, the RUL information obtained from the prediction process is… More >

  • Open Access

    ARTICLE

    Defending against Topological Information Probing for Online Decentralized Web Services

    Xinli Hao1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073155 - 12 January 2026

    Abstract Topological information is very important for understanding different types of online web services, in particular, for online social networks (OSNs). People leverage such information for various applications, such as social relationship modeling, community detection, user profiling, and user behavior prediction. However, the leak of such information will also pose severe challenges for user privacy preserving due to its usefulness in characterizing users. Large-scale web crawling-based information probing is a representative way for obtaining topological information of online web services. In this paper, we explore how to defend against topological information probing for online web services,… More >

  • Open Access

    ARTICLE

    KPA-ViT: Key Part-Level Attention Vision Transformer for Foreign Body Classification on Coal Conveyor Belt

    Haoxuanye Ji*, Zhiliang Chen, Pengfei Jiang, Ziyue Wang, Ting Yu, Wei Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071880 - 12 January 2026

    Abstract Foreign body classification on coal conveyor belts is a critical component of intelligent coal mining systems. Previous approaches have primarily utilized convolutional neural networks (CNNs) to effectively integrate spatial and semantic information. However, the performance of CNN-based methods remains limited in classification accuracy, primarily due to insufficient exploration of local image characteristics. Unlike CNNs, Vision Transformer (ViT) captures discriminative features by modeling relationships between local image patches. However, such methods typically require a large number of training samples to perform effectively. In the context of foreign body classification on coal conveyor belts, the limited availability… More >

  • Open Access

    ARTICLE

    BAID: A Lightweight Super-Resolution Network with Binary Attention-Guided Frequency-Aware Information Distillation

    Jiajia Liu1,*, Junyi Lin2, Wenxiang Dong2, Xuan Zhao2, Jianhua Liu2, Huiru Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071397 - 09 December 2025

    Abstract Single Image Super-Resolution (SISR) seeks to reconstruct high-resolution (HR) images from low-resolution (LR) inputs, thereby enhancing visual fidelity and the perception of fine details. While Transformer-based models—such as SwinIR, Restormer, and HAT—have recently achieved impressive results in super-resolution tasks by capturing global contextual information, these methods often suffer from substantial computational and memory overhead, which limits their deployment on resource-constrained edge devices. To address these challenges, we propose a novel lightweight super-resolution network, termed Binary Attention-Guided Information Distillation (BAID), which integrates frequency-aware modeling with a binary attention mechanism to significantly reduce computational complexity and parameter… More >

Displaying 1-10 on page 1 of 466. Per Page