Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (461)
  • Open Access

    ARTICLE

    Spatio-Temporal Monitoring and Assessment of Groundwater Quality for Domestic and Agricultural Use in Kurukshetra District, Haryana, India

    Aakash Deep*, Sushil Kumar, Bhagwan Singh Chaudhary

    Revue Internationale de Géomatique, Vol.35, pp. 79-100, 2026, DOI:10.32604/rig.2026.074969 - 05 February 2026

    Abstract The assessment of groundwater quality is crucial for ensuring its safe and sustainable use for domestic and agricultural purposes. The Kurukshetra district in the Indian state of Haryana relies heavily on groundwater to meet household and agricultural needs. Sustainable groundwater management must be assessed in terms of suitability for domestic and agricultural needs in a region. The current study analyzed pre-monsoon geochemical data from groundwater samples in the study area for 1991, 2000, 2010, and 2020. A Geographic Information System (GIS) was used to create spatial distribution maps for hydrogen ion concentration, total hardness, total… More >

  • Open Access

    ARTICLE

    Predictive Maintenance Strategy for Photovoltaic Power Systems: Collaborative Optimization of Transformer-Based Lifetime Prediction and Opposition-Based Learning HHO Algorithm

    Wei Chen, Yang Wu*, Tingting Pei, Jie Lin, Guojing Yuan

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070905 - 27 January 2026

    Abstract In view of the insufficient utilization of condition-monitoring information and the improper scheduling often observed in conventional maintenance strategies for photovoltaic (PV) modules, this study proposes a predictive maintenance (PdM) strategy based on Remaining Useful Life (RUL) estimation. First, a RUL prediction model is established using the Transformer architecture, which enables the effective processing of sequential degradation data. By employing the historical degradation data of PV modules, the proposed model provides accurate forecasts of the remaining useful life, thereby supplying essential inputs for maintenance decision-making. Subsequently, the RUL information obtained from the prediction process is… More >

  • Open Access

    ARTICLE

    Defending against Topological Information Probing for Online Decentralized Web Services

    Xinli Hao1, Qingyuan Gong2, Yang Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073155 - 12 January 2026

    Abstract Topological information is very important for understanding different types of online web services, in particular, for online social networks (OSNs). People leverage such information for various applications, such as social relationship modeling, community detection, user profiling, and user behavior prediction. However, the leak of such information will also pose severe challenges for user privacy preserving due to its usefulness in characterizing users. Large-scale web crawling-based information probing is a representative way for obtaining topological information of online web services. In this paper, we explore how to defend against topological information probing for online web services,… More >

  • Open Access

    ARTICLE

    KPA-ViT: Key Part-Level Attention Vision Transformer for Foreign Body Classification on Coal Conveyor Belt

    Haoxuanye Ji*, Zhiliang Chen, Pengfei Jiang, Ziyue Wang, Ting Yu, Wei Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071880 - 12 January 2026

    Abstract Foreign body classification on coal conveyor belts is a critical component of intelligent coal mining systems. Previous approaches have primarily utilized convolutional neural networks (CNNs) to effectively integrate spatial and semantic information. However, the performance of CNN-based methods remains limited in classification accuracy, primarily due to insufficient exploration of local image characteristics. Unlike CNNs, Vision Transformer (ViT) captures discriminative features by modeling relationships between local image patches. However, such methods typically require a large number of training samples to perform effectively. In the context of foreign body classification on coal conveyor belts, the limited availability… More >

  • Open Access

    ARTICLE

    BAID: A Lightweight Super-Resolution Network with Binary Attention-Guided Frequency-Aware Information Distillation

    Jiajia Liu1,*, Junyi Lin2, Wenxiang Dong2, Xuan Zhao2, Jianhua Liu2, Huiru Li3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071397 - 09 December 2025

    Abstract Single Image Super-Resolution (SISR) seeks to reconstruct high-resolution (HR) images from low-resolution (LR) inputs, thereby enhancing visual fidelity and the perception of fine details. While Transformer-based models—such as SwinIR, Restormer, and HAT—have recently achieved impressive results in super-resolution tasks by capturing global contextual information, these methods often suffer from substantial computational and memory overhead, which limits their deployment on resource-constrained edge devices. To address these challenges, we propose a novel lightweight super-resolution network, termed Binary Attention-Guided Information Distillation (BAID), which integrates frequency-aware modeling with a binary attention mechanism to significantly reduce computational complexity and parameter… More >

  • Open Access

    ARTICLE

    A Hierarchical Attention Framework for Business Information Systems: Theoretical Foundation and Proof-of-Concept Implementation

    Sabina-Cristiana Necula*, Napoleon-Alexandru Sireteanu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070861 - 09 December 2025

    Abstract Modern business information systems face significant challenges in managing heterogeneous data sources, integrating disparate systems, and providing real-time decision support in complex enterprise environments. Contemporary enterprises typically operate 200+ interconnected systems, with research indicating that 52% of organizations manage three or more enterprise content management systems, creating information silos that reduce operational efficiency by up to 35%. While attention mechanisms have demonstrated remarkable success in natural language processing and computer vision, their systematic application to business information systems remains largely unexplored. This paper presents the theoretical foundation for a Hierarchical Attention-Based Business Information System (HABIS)… More >

  • Open Access

    ARTICLE

    Lightweight Complex-Valued Neural Network for Indoor Positioning

    Le Wang1, Bing Xu1,*, Peng Liu2, En Yuan1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-14, 2026, DOI:10.32604/cmc.2025.070794 - 09 December 2025

    Abstract Deep learning has been recognized as an effective method for indoor positioning. However, most existing real-valued neural networks (RVNNs) treat the two constituent components of complex-valued channel state information (CSI) as real-valued inputs, potentially discarding useful information embedded in the original CSI. In addition, existing positioning models generally face the contradiction between computational complexity and positioning accuracy. To address these issues, we combine graph neural network (GNN) with complex-valued neural network (CVNN) to construct a lightweight indoor positioning model named CGNet. CGNet employs complex-valued convolution operation to directly process the original CSI data, fully exploiting… More >

  • Open Access

    ARTICLE

    A Generative Steganography Based on Attraction-Matrix-Driven Gomoku Games

    Yi Cao1, Kuo Zhang1, Chengsheng Yuan2,*, Linglong Zhu1, Wentao Ge2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070158 - 09 December 2025

    Abstract Generative steganography uses generative stego images to transmit secret message. It also effectively defends against statistical steganalysis. However, most existing methods focus primarily on matching the feature distribution of training data, often neglecting the sequential continuity between moves in the game. This oversight can result in unnatural patterns that deviate from real user behavior, thereby reducing the security of the hidden communication. To address this issue, we design a Gomoku agent based on the AlphaZero algorithm. The model engages in self-play to generate a sequence of plausible moves. These moves form the basis of the… More >

  • Open Access

    ARTICLE

    Validation of Contextual Model Principles through Rotated Images Interpretation

    Illia Khurtin*, Mukesh Prasad

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.067481 - 09 December 2025

    Abstract The field of artificial intelligence has advanced significantly in recent years, but achieving a human-like or Artificial General Intelligence (AGI) remains a theoretical challenge. One hypothesis suggests that a key issue is the formalisation of extracting meaning from information. Meaning emerges through a three-stage interpretative process, where the spectrum of possible interpretations is collapsed into a singular outcome by a particular context. However, this approach currently lacks practical grounding. In this research, we developed a model based on contexts, which applies interpretation principles to the visual information to address this gap. The field of computer… More >

  • Open Access

    REVIEW

    Deep Learning-Enhanced Human Sensing with Channel State Information: A Survey

    Binglei Yue, Aili Jiang, Chun Yang, Junwei Lei, Heng Liu, Yin Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.071047 - 10 November 2025

    Abstract With the growing advancement of wireless communication technologies, WiFi-based human sensing has gained increasing attention as a non-intrusive and device-free solution. Among the available signal types, Channel State Information (CSI) offers fine-grained temporal, frequency, and spatial insights into multipath propagation, making it a crucial data source for human-centric sensing. Recently, the integration of deep learning has significantly improved the robustness and automation of feature extraction from CSI in complex environments. This paper provides a comprehensive review of deep learning-enhanced human sensing based on CSI. We first outline mainstream CSI acquisition tools and their hardware specifications, More >

Displaying 1-10 on page 1 of 461. Per Page