Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (703)
  • Open Access

    ARTICLE

    Multi-Objective Enhanced Cheetah Optimizer for Joint Optimization of Computation Offloading and Task Scheduling in Fog Computing

    Ahmad Zia1, Nazia Azim2, Bekarystankyzy Akbayan3, Khalid J. Alzahrani4, Ateeq Ur Rehman5,*, Faheem Ullah Khan6, Nouf Al-Kahtani7, Hend Khalid Alkahtani8,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073818 - 12 January 2026

    Abstract The cloud-fog computing paradigm has emerged as a novel hybrid computing model that integrates computational resources at both fog nodes and cloud servers to address the challenges posed by dynamic and heterogeneous computing networks. Finding an optimal computational resource for task offloading and then executing efficiently is a critical issue to achieve a trade-off between energy consumption and transmission delay. In this network, the task processed at fog nodes reduces transmission delay. Still, it increases energy consumption, while routing tasks to the cloud server saves energy at the cost of higher communication delay. Moreover, the… More >

  • Open Access

    ARTICLE

    Energy Aware Task Scheduling of IoT Application Using a Hybrid Metaheuristic Algorithm in Cloud Computing

    Ahmed Awad Mohamed1, Eslam Abdelhakim Seyam2,*, Ahmed R. Elsaeed3, Laith Abualigah4, Aseel Smerat5,6, Ahmed M. AbdelMouty7, Hosam E. Refaat8

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073171 - 12 January 2026

    Abstract In recent years, fog computing has become an important environment for dealing with the Internet of Things. Fog computing was developed to handle large-scale big data by scheduling tasks via cloud computing. Task scheduling is crucial for efficiently handling IoT user requests, thereby improving system performance, cost, and energy consumption across nodes in cloud computing. With the large amount of data and user requests, achieving the optimal solution to the task scheduling problem is challenging, particularly in terms of cost and energy efficiency. In this paper, we develop novel strategies to save energy consumption across… More >

  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    Hybrid Malware Detection Model for Internet of Things Environment

    Abdul Rahaman Wahab Sait1,*, Yazeed Alkhurayyif2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072481 - 12 January 2026

    Abstract Malware poses a significant threat to the Internet of Things (IoT). It enables unauthorized access to devices in the IoT environment. The lack of unique architectural standards causes challenges in developing robust malware detection (MD) models. The existing models demand substantial computational resources. This study intends to build a lightweight MD model to detect anomalies in IoT networks. The authors develop a transformation technique, converting the malware binaries into images. MobileNet V2 is fine-tuned using improved grey wolf optimization (IGWO) to extract crucial features of malicious and benign samples. The ResNeXt model is combined with… More >

  • Open Access

    ARTICLE

    An IoT-Based Predictive Maintenance Framework Using a Hybrid Deep Learning Model for Smart Industrial Systems

    Atheer Aleran1, Hanan Almukhalfi1, Ayman Noor1, Reyadh Alluhaibi2, Abdulrahman Hafez3, Talal H. Noor1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070741 - 12 January 2026

    Abstract Modern industrial environments require uninterrupted machinery operation to maintain productivity standards while ensuring safety and minimizing costs. Conventional maintenance methods, such as reactive maintenance (i.e., run to failure) or time-based preventive maintenance (i.e., scheduled servicing), prove ineffective for complex systems with many Internet of Things (IoT) devices and sensors because they fall short in detecting faults at early stages when it is most crucial. This paper presents a predictive maintenance framework based on a hybrid deep learning model that integrates the capabilities of Long Short-Term Memory (LSTM) Networks and Convolutional Neural Networks (CNNs). The framework… More >

  • Open Access

    ARTICLE

    Enhancing IoT-Enabled Electric Vehicle Efficiency: Smart Charging Station and Battery Management Solution

    Supriya Wadekar1,*, Shailendra Mittal1, Ganesh Wakte2, Rajshree Shinde2

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.071761 - 27 December 2025

    Abstract Rapid evolutions of the Internet of Electric Vehicles (IoEVs) are reshaping and modernizing transport systems, yet challenges remain in energy efficiency, better battery aging, and grid stability. Typical charging methods allow for EVs to be charged without thought being given to the condition of the battery or the grid demand, thus increasing energy costs and battery aging. This study proposes a smart charging station with an AI-powered Battery Management System (BMS), developed and simulated in MATLAB/Simulink, to increase optimality in energy flow, battery health, and impractical scheduling within the IoEV environment. The system operates through… More >

  • Open Access

    ARTICLE

    Lightweight Hash-Based Post-Quantum Signature Scheme for Industrial Internet of Things

    Chia-Hui Liu*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.072887 - 09 December 2025

    Abstract The Industrial Internet of Things (IIoT) has emerged as a cornerstone of Industry 4.0, enabling large-scale automation and data-driven decision-making across factories, supply chains, and critical infrastructures. However, the massive interconnection of resource-constrained devices also amplifies the risks of eavesdropping, data tampering, and device impersonation. While digital signatures are indispensable for ensuring authenticity and non-repudiation, conventional schemes such as RSA and ECC are vulnerable to quantum algorithms, jeopardizing long-term trust in IIoT deployments. This study proposes a lightweight, stateless, hash-based signature scheme that achieves post-quantum security while addressing the stringent efficiency demands of IIoT. The… More >

  • Open Access

    REVIEW

    FSL-TM: Review on the Integration of Federated Split Learning with TinyML in the Internet of Vehicles

    Meenakshi Aggarwal1, Vikas Khullar2,*, Nitin Goyal3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.072673 - 09 December 2025

    Abstract The Internet of Vehicles, or IoV, is expected to lessen pollution, ease traffic, and increase road safety. IoV entities’ interconnectedness, however, raises the possibility of cyberattacks, which can have detrimental effects. IoV systems typically send massive volumes of raw data to central servers, which may raise privacy issues. Additionally, model training on IoV devices with limited resources normally leads to slower training times and reduced service quality. We discuss a privacy-preserving Federated Split Learning with Tiny Machine Learning (TinyML) approach, which operates on IoV edge devices without sharing sensitive raw data. Specifically, we focus on… More >

  • Open Access

    ARTICLE

    Overcoming Dynamic Connectivity in Internet of Vehicles: A DAG Lattice Blockchain with Reputation-Based Incentive

    Xiaodong Zhang1, Wenhan Hou2,*, Juanjuan Wang3, Leixiao Li1, Pengfei Yue1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072384 - 09 December 2025

    Abstract Blockchain offers a promising solution to the security challenges faced by the Internet of Vehicles (IoV). However, due to the dynamic connectivity of IoV, blockchain based on a single-chain structure or Directed Acyclic Graph (DAG) structure often suffer from performance limitations. The DAG lattice structure is a novel blockchain model in which each node maintains its own account chain, and only the node itself is allowed to update it. This feature makes the DAG lattice structure particularly suitable for addressing the challenges in dynamically connected IoV environment. In this paper, we propose a blockchain architecture… More >

  • Open Access

    ARTICLE

    Industrial EdgeSign: NAS-Optimized Real-Time Hand Gesture Recognition for Operator Communication in Smart Factories

    Meixi Chu1, Xinyu Jiang1,*, Yushu Tao2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071533 - 09 December 2025

    Abstract Industrial operators need reliable communication in high-noise, safety-critical environments where speech or touch input is often impractical. Existing gesture systems either miss real-time deadlines on resource-constrained hardware or lose accuracy under occlusion, vibration, and lighting changes. We introduce Industrial EdgeSign, a dual-path framework that combines hardware-aware neural architecture search (NAS) with large multimodal model (LMM) guided semantics to deliver robust, low-latency gesture recognition on edge devices. The searched model uses a truncated ResNet50 front end, a dimensional-reduction network that preserves spatiotemporal structure for tubelet-based attention, and localized Transformer layers tuned for on-device inference. To reduce… More >

Displaying 1-10 on page 1 of 703. Per Page