Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Visual Enhancement of Underwater Images Using Transmission Estimation and Multi-Scale Fusion

    R. Vijay Anandh1,*, S. Rukmani Devi2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1897-1910, 2023, DOI:10.32604/csse.2023.027187

    Abstract The demand for the exploration of ocean resources is increasing exponentially. Underwater image data plays a significant role in many research areas. Despite this, the visual quality of underwater images is degraded because of two main factors namely, backscattering and attenuation. Therefore, visual enhancement has become an essential process to recover the required data from the images. Many algorithms had been proposed in a decade for improving the quality of images. This paper aims to propose a single image enhancement technique without the use of any external datasets. For that, the degraded images are subjected to two main processes namely,… More >

  • Open Access


    Better Visual Image Super-Resolution with Laplacian Pyramid of Generative Adversarial Networks

    Ming Zhao1, Xinhong Liu1, Xin Yao1, *, Kun He2

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1601-1614, 2020, DOI:10.32604/cmc.2020.09754

    Abstract Although there has been a great breakthrough in the accuracy and speed of super-resolution (SR) reconstruction of a single image by using a convolutional neural network, an important problem remains unresolved: how to restore finer texture details during image super-resolution reconstruction? This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network (ELSRGAN), based on the Laplacian pyramid to capture the high-frequency details of the image. By combining Laplacian pyramids and generative adversarial networks, progressive reconstruction of super-resolution images can be made, making model applications more flexible. In order to solve the problem of gradient disappearance, we introduce the Residual-in-Residual Dense… More >

Displaying 1-10 on page 1 of 2. Per Page