Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ABSTRACT

    Carrying Capacity of Pressure Vessels under Hydrostatic Pressure

    Yang-chun DENG, Gang CHEN

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.1, pp. 27-28, 2011, DOI:10.3970/icces.2011.017.027

    Abstract To use material effective and keep pressure vessel safety, large deformation analysis for pressure vessel is very important. Until 2007, the elastic-plastic stress analysis method, that is the first time all over the world, is provided in ASME a.?-2 edition 2007 for boiler and pressure vessel standard that Finite Element Method is used with large deformation analysis. But there is no common recognized direct solution for the carrying capacity of pressure vessels yet and this restrict the application of large deformation analysis in pressure vessel design. This paper investigates the carrying capacity of pressure vessels under hydrostatic pressure, based on… More >

  • Open Access

    ABSTRACT

    Some Application of MLPG in Large Deformation Analysis of Hyperelasto-Plastic Material

    Zhenhan Yao1,Zhangfei Zhang1, Xi Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.3, pp. 133-138, 2007, DOI:10.3970/icces.2007.003.133

    Abstract The Meshless Local Petrov-Galerkin (MLPG) Method is applied to solve large deformation problems of elasto-plastic materials. In order to avoid re-computation of the shape functions, the supports of MLS approximation functions cover the same sets of nodes during the deformation; fundamental variables are represented in spatial configuration, while the numerical quadrature is conducted in the material configuration; the derivation of shape function to spatial coordinate is pushed back to material coordinate by tensor transformation. For simulating both large strain and large rotation, the multiplicative hyperelasto-plastic constitutive model is adopted for path-dependent material. Numerical results indicate that the MLPG method can… More >

  • Open Access

    ABSTRACT

    An algorithm for contact problem with large deformation of plane frame structures

    T. Tsutsui1, H. Obiya1, K. Ijima1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 71-76, 2009, DOI:10.3970/icces.2009.010.071

    Abstract This study shows an algorithm, which solves the contact phenomenon without friction with large deformation for plane frame structures. Particularly, the study mentions about a technique for the case when contact node slide to the next-door element from edge of the contact element. The technique is to use the re-division and uniting of the element, in order to avoid the computational unstable territory around the edge of the contact element. Furthermore the authors consider about unstable territory of the contact point by some numerical examples. More >

  • Open Access

    ABSTRACT

    Three-Dimensional J-Integral Based on a Domain Integral Method for Non-Homogeneous Solid with Residual Stresses Undergoing Large Deformation

    Hiroshi Okada*, Tatsuro Ishizaka, Akira Takahashi, Koichiro Arai, Yasunori Yusa

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 10-11, 2019, DOI:10.32604/icces.2019.05037

    Abstract In this paper, a new three-dimensional J-integral for non-homogeneous solids undergoing large deformation and associated with residual stresses is presented. The formulation of J-integral involves the strain energy density W that is generally defined by the integral W = ∫0t τijε·ijdt over the entire deformation history of a material point where tij and ε·ij are the components of the Kirchhoff stress and those of velocity strain. t and t represents the time. It is assumed that at t = 0 the body is free from any deformation and therefore the stresses are zeros.
    Residual stresses are… More >

  • Open Access

    ABSTRACT

    Large deformation FEM analysis of ductile fracture

    Sanjeev Saxena1, N. Ramakrishnan1, B.K. Dutta2, P. Rama Rao3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.4, pp. 147-152, 2007, DOI:10.3970/icces.2007.001.147

    Abstract Several methods are in vogue to understand the process of crack initiation and propagation in ductile materials. In an attempt to achieve a unified understanding of these methods, a large deformation finite element analysis has been carried out. An attempt has been made to understand ductile fracture by numerically determining the ductile fracture toughness by three different methods viz. 1) Load-displacement method 2) Path-integral method 3) Stretch zone width method (SZW). In addition, an attempt has to be made to explore the possibility of using `characteristic distance'(lc) approach for establishing fracture toughness. The present study attempts at achieving an insight… More >

  • Open Access

    ARTICLE

    Large Deformation Hyper-Elastic Modeling for Nonlinear Dynamic Analysis of Two Dimensional Functionally Graded Domains Using the Meshless Local Petrov-Galerkin (MLPG) Method

    Mohammad Hossein Ghadiri Rad1, Farzad Shahabian1,2, Seyed Mahmoud Hosseini3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.3, pp. 135-157, 2015, DOI:10.3970/cmes.2015.108.135

    Abstract A meshless method based on the local Petrov-Galerkin approach is developed for elasto-dynamic analysis of geometrically nonlinear two dimensional (2D) problems in hyper-elastic functionally graded materials. The radial point interpolation method (RPIM) is utilized to build the shape functions and the Heaviside step function is used as the test function. The mechanical properties of functionally graded material are considered to continuously vary in a certain direction and are simulated using a nonlinear power function in volume fraction form. Considering the large deformations, it is assumed that the domain be made of large deformable neo-Hookean hyperelastic materials. Rayleigh damping is employed… More >

  • Open Access

    ARTICLE

    Large Deformation Dynamic Three-Dimensional Coupled Finite Element Analysis of Soft Biological Tissues Treated as Biphasic Porous Media

    R.A. Regueiro1,2, B. Zhang2, S.L. Wozniak3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.1, pp. 1-39, 2014, DOI:10.3970/cmes.2014.098.001

    Abstract The paper presents three-dimensional, large deformation, coupled finite element analysis (FEA) of dynamic loading on soft biological tissues treated as biphasic (solid-fluid) porous media. An overview is presented of the biphasic solidfluid mixture theory at finite strain, including inertia terms. The solid skeleton is modeled as an isotropic, compressible, hyperelastic material. FEA simulations include: (1) compressive uniaxial strain loading on a column of lung parenchyma with either pore air or water fluid, (2) out-of-plane pressure loading on a thin slab of lung parenchyma with either pore air or water fluid, and (3) pressure loading on a 1/8th symmetry vertebral disc… More >

  • Open Access

    ARTICLE

    Large Deformation Analysis with Galerkin based Smoothed Particle Hydrodynamics

    S. Wong, Y. Shie

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.2, pp. 97-118, 2008, DOI:10.3970/cmes.2008.036.097

    Abstract In this paper, we propose a Galerkin-based smoothed particle hydrodynamics (SPH) formulation with moving least-squares meshless approximation, applied to solid mechanics and large deformation. Our method is truly meshless and based on Lagrangian kernel formulation and stabilized nodal integration. The performance of the methodology proposed is tested through various simulations, demonstrating the attractive ability of particle methods to handle severe distortions and complex phenomena. More >

  • Open Access

    ARTICLE

    Application of Meshless Local Petrov-Galerkin (MLPG) Method in Cloth Simulation

    Weiran Yuan1,2, Yujun Chen2,3, André Gagalowicz2, Kaixin Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.2, pp. 133-156, 2008, DOI:10.3970/cmes.2008.035.133

    Abstract In this paper we present an approach to cloth simulation which models the deformation based on continuum mechanics and discretized with Meshless Local Petrov-Galerkin (MLPG) Method. MLPG method, which involves not only a meshless interpolation for trial functions, but also a meshless integration of the local weak form, has been considered as a general basis for the other meshless methods. By this way, the mechanical behavior of cloth is consistent and united, which is independent of the resolutions. At the same time, point sampled models, which neither have to store nor to maintain globally consistent topological information, are available for… More >

  • Open Access

    ARTICLE

    Large Rotation Analyses of Plate/Shell Structures Based on the Primal Variational Principle and a Fully Nonlinear Theory in the Updated Lagrangian Co-Rotational Reference Frame

    Y.C. Cai1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.3, pp. 249-274, 2012, DOI:10.3970/cmes.2012.083.249

    Abstract This paper presents a very simple finite element method for geometrically nonlinear large rotation analyses of plate/shell structures comprising of thin members. A fully nonlinear theory of deformation is employed in the updated Lagrangian reference frame of each plate element, to account for bending, stretching and torsion of each element. An assumed displacement approach, based on the Discrete Kirchhoff Theory (DKT) over each element, is employed to derive an explicit expression for the (18x18) symmetric tangent stiffness matrix of the plate element in the co-rotational reference frame. The finite rotation of the updated Lagrangian reference frame relative to a globally… More >

Displaying 11-20 on page 2 of 38. Per Page