Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Experimental Study of the Effect of Water Salinity on the Parameters of an Equilibrium Droplet Cluster Levitating over a Water Layer

    Alexander A. Fedorets1, Eduard E. Kolmakov1, Leonid A. Dombrovsky1,2,3,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 1-14, 2024, DOI:10.32604/fhmt.2024.049335

    Abstract New experimental results, which are important for the potential use of small levitating droplets as biochemical microreactors, are reported. It is shown that the combination of infrared heating and reduced evaporation of saline water under the droplet cluster is sufficient to produce equilibrium saltwater droplets over a wide temperature range. The resulting universal dependence of droplet size on temperature simplifies the choice of optimal conditions for generating stable droplet clusters with droplets of the desired size. A physical analysis of the experimental results on the equilibrium size of saltwater droplets makes it possible to separate the effects related to the… More > Graphic Abstract

    Experimental Study of the Effect of Water Salinity on the Parameters of an Equilibrium Droplet Cluster Levitating over a Water Layer

  • Open Access

    ARTICLE

    Parameter Scaling of the Aerodynamic Breakup of the Acoustic Levitated Droplets in an Air Jet Flow

    Yanju Wei1,*, Shengcai Deng1, Jie Zhang1, Yajing Yang2, Hao Chen3

    Energy Engineering, Vol.118, No.2, pp. 225-235, 2021, DOI:10.32604/EE.2021.012416

    Abstract The aerodynamic breakup of the droplet has been intensely studied in this paper. We aim to establish a unified relationship between dimensionless kinematic parameters such as displacement, spreading diameter, Weber number, time, and so on. The breakup characteristics of the acoustic levitated ethanol droplet are experimentally investigated when exposed to an air jet flow. The breakup phenomenons were recorded with a high-speed camera. The breakup characteristics were analyzed, and the physical models of the moving and transforming behaviors were established to explain the breakup mechanisms. We found that the displacement of the windward side of the droplet follows free acceleration… More >

  • Open Access

    ARTICLE

    Differential Responses of Cultured MC3T3-E1 Cells to Dynamic and Static Stimulated Effect of Microgravity in Cell Morphology, Cytoskeleton Structure and Ca2+ Signaling

    Mingzhi Luo1,2, Peili Yu1, Yang Jin3, Zhili Qian1, Yue Wang1, Jingjing Li1, Peng Shang2*, Linhong Deng1*

    Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 137-157, 2016, DOI:10.3970/mcb.2016.013.155

    Abstract Random positioning machine (RPM) and diamagnetic levitation are two essential ground-based methods used to stimulate the effect of microgravity in space life science research. However, the force fields generated by these two methods are fundamentally different, as RPM generates a dynamic force field acting on the surface in contact with supporting substrate, whereas diamagnetic levitation generates a static force field acting on the whole body volume of the object (e.g. cell). Surprisingly, it is hardly studied whether these two fundamentally different force fields would cause different responses in mammalian cells. Thus we exposed cultured MC3T3-E1 osteoblasts to either dynamically stimulated… More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part III: Thermophysical Property Measurements in Microgravity

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 1-22, 2009, DOI:10.3970/fdmp.2009.005.001

    Abstract Strong inhomogeneous magnetic fields are necessary to generate a finite levitation force in ground based electromagnetic levitation techniques. External forces such as magnetic and gravitational forces influence the oscillation spectrum and counteract the surface movement resulting in a frequency shift, and making the use of electromagnetic levitation techniques in microgravity an attractive alternative to measure thermophysical properties of liquid metals. Under microgravity conditions the magnetic field strength around a liquid droplet is significantly lower than that required to position the same specimen against earth gravity. Hence, a low magnetic field strength results in a low amount of heat energy absorbed… More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part II: Thermophysical Property Measurements in Terrestrial Conditions

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.3, pp. 163-184, 2008, DOI:10.3970/fdmp.2008.004.163

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Electromagnetic Levitation Part I: Theoretical and Experimental Considerations

    Sayavur I. Bakhtiyarov1, Dennis A. Siginer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.2, pp. 99-112, 2008, DOI:10.3970/fdmp.2008.004.099

    Abstract Levitation of liquid bodies against gravity is a contactless confinement process appropriate for manufacturing very pure materials. A variety of levitation techniques have been developed over the last few decades, such as aerodynamic, acoustic, electrostatic, microwave, and electromagnetic levitations. More recently, a new generation of novel techniques, essentially combinations of the established primary techniques, has been successfully introduced. Examples are acoustic-electric, aerodynamic-acoustic and acoustic-electromagnetic. The purpose of this series of papers in three parts, Bakhtiyarov and Siginer (2007a,b), is to review the advances in electromagnetic levitation (EML) since its introduction as a containerless melting technique, and a tool for the… More >

Displaying 1-10 on page 1 of 6. Per Page