Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Load Forecasting of the Power System: An Investigation Based on the Method of Random Forest Regression

    Fuyun Zhu, Guoqing Wu*

    Energy Engineering, Vol.118, No.6, pp. 1703-1712, 2021, DOI:10.32604/EE.2021.015602

    Abstract Accurate power load forecasting plays an important role in the power dispatching and security of grid. In this paper, a mathematical model for power load forecasting based on the random forest regression (RFR) was established. The input parameters of RFR model were determined by means of the grid search algorithm. The prediction results for this model were compared with those for several other common machine learning methods. It was found that the coefficient of determination (R2) of test set based on the RFR model was the highest, reaching 0.514 while the corresponding mean absolute error (MAE) More >

  • Open Access

    ARTICLE

    A Weighted Combination Forecasting Model for Power Load Based on Forecasting Model Selection and Fuzzy Scale Joint Evaluation

    Bingbing Chen*, Zhengyi Zhu, Xuyan Wang, Can Zhang

    Energy Engineering, Vol.118, No.5, pp. 1499-1514, 2021, DOI:10.32604/EE.2021.015145

    Abstract To solve the medium and long term power load forecasting problem, the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward. This model is divided into two stages which are forecasting model selection and weighted combination forecasting. Based on Markov chain conversion and cloud model, the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting. For the weighted combination forecasting, a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model. The percentage error and More >

  • Open Access

    ARTICLE

    Long-Term Electricity Demand Forecasting for Malaysia Using Artificial Neural Networks in the Presence of Input and Model Uncertainties

    Vin Cent Tai1,*, Yong Chai Tan1, Nor Faiza Abd Rahman1, Hui Xin Che2, Chee Ming Chia2, Lip Huat Saw3, Mohd Fozi Ali4

    Energy Engineering, Vol.118, No.3, pp. 715-725, 2021, DOI:10.32604/EE.2021.014865

    Abstract Electricity demand is also known as load in electric power system. This article presents a Long-Term Load Forecasting (LTLF) approach for Malaysia. An Artificial Neural Network (ANN) of 5-layer Multi-Layered Perceptron (MLP) structure has been designed and tested for this purpose. Uncertainties of input variables and ANN model were introduced to obtain the prediction for years 2022 to 2030. Pearson correlation was used to examine the input variables for model construction. The analysis indicates that Primary Energy Supply (PES), population, Gross Domestic Product (GDP) and temperature are strongly correlated. The forecast results by the proposed… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Architecture to Forecast Maximum Load Duration Using Time-of-Use Pricing Plans

    Jinseok Kim1, Babar Shah2, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 283-301, 2021, DOI:10.32604/cmc.2021.016042

    Abstract Load forecasting has received crucial research attention to reduce peak load and contribute to the stability of power grid using machine learning or deep learning models. Especially, we need the adequate model to forecast the maximum load duration based on time-of-use, which is the electricity usage fare policy in order to achieve the goals such as peak load reduction in a power grid. However, the existing single machine learning or deep learning forecasting cannot easily avoid overfitting. Moreover, a majority of the ensemble or hybrid models do not achieve optimal results for forecasting the maximum… More >

Displaying 21-30 on page 3 of 24. Per Page