Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (138)
  • Open Access

    ARTICLE

    SNR and RSSI Based an Optimized Machine Learning Based Indoor Localization Approach: Multistory Round Building Scenario over LoRa Network

    Muhammad Ayoub Kamal1,3, Muhammad Mansoor Alam1,2,4,6, Aznida Abu Bakar Sajak1, Mazliham Mohd Su’ud2,5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1927-1945, 2024, DOI:10.32604/cmc.2024.052169

    Abstract In situations when the precise position of a machine is unknown, localization becomes crucial. This research focuses on improving the position prediction accuracy over long-range (LoRa) network using an optimized machine learning-based technique. In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology, this study proposed an optimized machine learning (ML) based algorithm. Received signal strength indicator (RSSI) data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building. The More >

  • Open Access

    ARTICLE

    Research on Improved MobileViT Image Tamper Localization Model

    Jingtao Sun1,2, Fengling Zhang1,2,*, Huanqi Liu1,2, Wenyan Hou1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3173-3192, 2024, DOI:10.32604/cmc.2024.051705

    Abstract As image manipulation technology advances rapidly, the malicious use of image tampering has alarmingly escalated, posing a significant threat to social stability. In the realm of image tampering localization, accurately localizing limited samples, multiple types, and various sizes of regions remains a multitude of challenges. These issues impede the model’s universality and generalization capability and detrimentally affect its performance. To tackle these issues, we propose FL-MobileViT-an improved MobileViT model devised for image tampering localization. Our proposed model utilizes a dual-stream architecture that independently processes the RGB and noise domain, and captures richer traces of tampering… More >

  • Open Access

    ARTICLE

    Enhancing Indoor User Localization: An Adaptive Bayesian Approach for Multi-Floor Environments

    Abdulraqeb Alhammadi1,*, Zaid Ahmed Shamsan2, Arijit De3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1889-1905, 2024, DOI:10.32604/cmc.2024.051487

    Abstract Indoor localization systems are crucial in addressing the limitations of traditional global positioning system (GPS) in indoor environments due to signal attenuation issues. As complex indoor spaces become more sophisticated, indoor localization systems become essential for improving user experience, safety, and operational efficiency. Indoor localization methods based on Wi-Fi fingerprints require a high-density location fingerprint database, but this can increase the computational burden in the online phase. Bayesian networks, which integrate prior knowledge or domain expertise, are an effective solution for accurately determining indoor user locations. These networks use probabilistic reasoning to model relationships among… More >

  • Open Access

    ARTICLE

    Passive IoT Localization Technology Based on SD-PDOA in NLOS and Multi-Path Environments

    Junyang Liu1, Yuan Li2, Yulu Zhang2, Shuai Ma2, Gui Li3, Yi He1, Haiwen Yi1, Yue Liu1, Xiaotao Xu4, Xu Zhang1, Jinyao He1, Guangjun Wen1, Jian Li1,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 913-930, 2024, DOI:10.32604/cmc.2024.049999

    Abstract Addressing the challenges of passive Radio Frequency Identification (RFID) indoor localization technology in Non-Line-of-Sight (NLoS) and multipath environments, this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival (SD-PDOA) and Received Signal Strength Indicator (RSSI). This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information, thereby facilitating high precision and stability in passive RFID localization. The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on… More >

  • Open Access

    ARTICLE

    A Disturbance Localization Method for Power System Based on Group Sparse Representation and Entropy Weight Method

    Zeyi Wang1, Mingxi Jiao1, Daliang Wang1, Minxu Liu1, Minglei Jiang2, He Wang3, Shiqiang Li3,*

    Energy Engineering, Vol.121, No.8, pp. 2275-2291, 2024, DOI:10.32604/ee.2024.028223

    Abstract This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method. Three different electrical quantities are selected as observations in the compressed sensing algorithm. The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels. Subsequently, by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,… More >

  • Open Access

    ARTICLE

    Analyzing the Impact of Scene Transitions on Indoor Camera Localization through Scene Change Detection in Real-Time

    Muhammad S. Alam1,5,*, Farhan B. Mohamed1,3, Ali Selamat2, Faruk Ahmed4, AKM B. Hossain6,7

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 417-436, 2024, DOI:10.32604/iasc.2024.051999

    Abstract Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems. The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed. This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence. An annotated image dataset trains the proposed system and predicts the camera pose in real-time. The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera More >

  • Open Access

    ARTICLE

    An Improved Deep Learning Framework for Automated Optic Disc Localization and Glaucoma Detection

    Hela Elmannai1,*, Monia Hamdi1, Souham Meshoul1, Amel Ali Alhussan2, Manel Ayadi3, Amel Ksibi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1429-1457, 2024, DOI:10.32604/cmes.2024.048557

    Abstract Glaucoma disease causes irreversible damage to the optical nerve and it has the potential to cause permanent loss of vision. Glaucoma ranks as the second most prevalent cause of permanent blindness. Traditional glaucoma diagnosis requires a highly experienced specialist, costly equipment, and a lengthy wait time. For automatic glaucoma detection, state-of-the-art glaucoma detection methods include a segmentation-based method to calculate the cup-to-disc ratio. Other methods include multi-label segmentation networks and learning-based methods and rely on hand-crafted features. Localizing the optic disc (OD) is one of the key features in retinal images for detecting retinal diseases,… More >

  • Open Access

    ARTICLE

    Lightweight Res-Connection Multi-Branch Network for Highly Accurate Crowd Counting and Localization

    Mingze Li, Diwen Zheng, Shuhua Lu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2105-2122, 2024, DOI:10.32604/cmc.2024.048928

    Abstract Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis, achieving tremendous success recently with the development of deep learning. However, there have been still many challenges including crowd multi-scale variations and high network complexity, etc. To tackle these issues, a lightweight Res-connection multi-branch network (LRMBNet) for highly accurate crowd counting and localization is proposed. Specifically, using improved ShuffleNet V2 as the backbone, a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters. A light multi-branch structure with different expansion rate… More >

  • Open Access

    ARTICLE

    An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images

    Syed Ayaz Ali Shah1,*, Aamir Shahzad1,*, Musaed Alhussein2, Chuan Meng Goh3, Khursheed Aurangzeb2, Tong Boon Tang4, Muhammad Awais5

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2565-2583, 2024, DOI:10.32604/cmc.2024.047597

    Abstract Diagnosing various diseases such as glaucoma, age-related macular degeneration, cardiovascular conditions, and diabetic retinopathy involves segmenting retinal blood vessels. The task is particularly challenging when dealing with color fundus images due to issues like non-uniform illumination, low contrast, and variations in vessel appearance, especially in the presence of different pathologies. Furthermore, the speed of the retinal vessel segmentation system is of utmost importance. With the surge of now available big data, the speed of the algorithm becomes increasingly important, carrying almost equivalent weightage to the accuracy of the algorithm. To address these challenges, we present… More > Graphic Abstract

    An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images

  • Open Access

    REVIEW

    Survey of Indoor Localization Based on Deep Learning

    Khaldon Azzam Kordi1, Mardeni Roslee1,*, Mohamad Yusoff Alias1, Abdulraqeb Alhammadi2, Athar Waseem3, Anwar Faizd Osman4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3261-3298, 2024, DOI:10.32604/cmc.2024.044890

    Abstract This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning. It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this research explores the integration of multiple sensor modalities (e.g., Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expand indoor localization methods, particularly in obstructed environments. It addresses the challenge of precise object localization, introducing a novel hybrid DL approach using received signal information (RSI), Received Signal Strength (RSS), and Channel State Information (CSI) data… More >

Displaying 1-10 on page 1 of 138. Per Page