Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Knee Osteoarthritis Classification Using X-Ray Images Based on Optimal Deep Neural Network

    Abdul Haseeb1, Muhammad Attique Khan1,*, Faheem Shehzad1, Majed Alhaisoni2, Junaid Ali Khan1, Taerang Kim3, Jae-Hyuk Cha3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2397-2415, 2023, DOI:10.32604/csse.2023.040529 - 28 July 2023

    Abstract X-Ray knee imaging is widely used to detect knee osteoarthritis due to ease of availability and lesser cost. However, the manual categorization of knee joint disorders is time-consuming, requires an expert person, and is costly. This article proposes a new approach to classifying knee osteoarthritis using deep learning and a whale optimization algorithm. Two pre-trained deep learning models (Efficientnet-b0 and Densenet201) have been employed for the training and feature extraction. Deep transfer learning with fixed hyperparameter values has been employed to train both selected models on the knee X-Ray images. In the next step, fusion… More >

  • Open Access

    ARTICLE

    Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease

    Ingo Paetsch1,*, Roman Gebauer2, Christian Paech2, Frank-Thomas Riede2, Sabrina Oebel1, Andreas Bollmann1, Christian Stehning3, Jouke Smink4, Ingo Daehnert2, Cosima Jahnke1

    Congenital Heart Disease, Vol.18, No.3, pp. 279-294, 2023, DOI:10.32604/chd.2023.029634 - 09 June 2023

    Abstract Background: In congenital heart disease (CHD) patients, detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making. Hence, the present study investigated the applicability of an advanced cardiovascular magnetic resonance (CMR) whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography. Methods: 86 consecutive pediatric patients and adults with congenital heart disease (age, 1 to 74 years; mean, 35 years) underwent CMR imaging including a free-breathing, ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed… More >

  • Open Access

    ARTICLE

    IRMIRS: Inception-ResNet-Based Network for MRI Image Super-Resolution

    Wazir Muhammad1, Zuhaibuddin Bhutto2,*, Salman Masroor3,4, Murtaza Hussain Shaikh5, Jalal Shah2, Ayaz Hussain1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1121-1142, 2023, DOI:10.32604/cmes.2023.021438 - 06 February 2023

    Abstract Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues. These challenges are increasing the interest in the quality of medical images. Recent research has proven that the rapid progress in convolutional neural networks (CNNs) has achieved superior performance in the area of medical image super-resolution. However, the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance (MR) images, adding extra noise in the models and more memory consumption. Furthermore, conventional deep CNN approaches used layers in series-wise connection to create the deeper mode, because More >

  • Open Access

    ARTICLE

    Lung Cancer Segmentation with Three-Parameter Logistic Type Distribution Model

    Debnath Bhattacharyya1, Eali. Stephen Neal Joshua2, N. Thirupathi Rao2, Yung-cheol Byun3,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1447-1465, 2023, DOI:10.32604/cmc.2023.031878 - 06 February 2023

    Abstract Lung cancer is the leading cause of mortality in the world affecting both men and women equally. When a radiologist just focuses on the patient’s body, it increases the amount of strain on the radiologist and the likelihood of missing pathological information such as abnormalities are increased. One of the primary objectives of this research work is to develop computer-assisted diagnosis and detection of lung cancer. It also intends to make it easier for radiologists to identify and diagnose lung cancer accurately. The proposed strategy which was based on a unique image feature, took into… More >

  • Open Access

    ARTICLE

    Automated Brain Hemorrhage Classification and Volume Analysis

    Maryam Wardah1, Muhammad Mateen1,*, Tauqeer Safdar Malik2, Mohammad Eid Alzahrani3, Adil Fahad3, Abdulmohsen Almalawi4, Rizwan Ali Naqvi5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2283-2299, 2023, DOI:10.32604/cmc.2023.030706 - 06 February 2023

    Abstract Brain hemorrhage is a serious and life-threatening condition. It can cause permanent and lifelong disability even when it is not fatal. The word hemorrhage denotes leakage of blood within the brain and this leakage of blood from capillaries causes stroke and adequate supply of oxygen to the brain is hindered. Modern imaging methods such as computed tomography (CT) and magnetic resonance imaging (MRI) are employed to get an idea regarding the extent of the damage. An early diagnosis and treatment can save lives and limit the adverse effects of a brain hemorrhage. In this case,… More >

  • Open Access

    ARTICLE

    Xception-Fractalnet: Hybrid Deep Learning Based Multi-Class Classification of Alzheimer’s Disease

    Mudiyala Aparna, Battula Srinivasa Rao*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6909-6932, 2023, DOI:10.32604/cmc.2023.034796 - 28 December 2022

    Abstract Neurological disorders such as Alzheimer’s disease (AD) are very challenging to treat due to their sensitivity, technical challenges during surgery, and high expenses. The complexity of the brain structures makes it difficult to distinguish between the various brain tissues and categorize AD using conventional classification methods. Furthermore, conventional approaches take a lot of time and might not always be precise. Hence, a suitable classification framework with brain imaging may produce more accurate findings for early diagnosis of AD. Therefore in this paper, an effective hybrid Xception and Fractalnet-based deep learning framework are implemented to classify… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Models for Magnetic Resonance Imaging (MRI)-Based Brain Tumor Classification

    Abdullah A. Asiri1, Bilal Khan2, Fazal Muhammad3,*, Shams ur Rahman4, Hassan A. Alshamrani1, Khalaf A. Alshamrani1, Muhammad Irfan5, Fawaz F. Alqhtani1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 299-312, 2023, DOI:10.32604/iasc.2023.032426 - 29 September 2022

    Abstract In the medical profession, recent technological advancements play an essential role in the early detection and categorization of many diseases that cause mortality. The technique rising on daily basis for detecting illness in magnetic resonance through pictures is the inspection of humans. Automatic (computerized) illness detection in medical imaging has found you the emergent region in several medical diagnostic applications. Various diseases that cause death need to be identified through such techniques and technologies to overcome the mortality ratio. The brain tumor is one of the most common causes of death. Researchers have already proposed… More >

  • Open Access

    ARTICLE

    Non Sub-Sampled Contourlet with Joint Sparse Representation Based Medical Image Fusion

    Kandasamy Kittusamy*, Latha Shanmuga Vadivu Sampath Kumar

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1989-2005, 2023, DOI:10.32604/csse.2023.026501 - 01 August 2022

    Abstract Medical Image Fusion is the synthesizing technology for fusing multimodal medical information using mathematical procedures to generate better visual on the image content and high-quality image output. Medical image fusion represents an indispensible role in fixing major solutions for the complicated medical predicaments, while the recent research results have an enhanced affinity towards the preservation of medical image details, leaving color distortion and halo artifacts to remain unaddressed. This paper proposes a novel method of fusing Computer Tomography (CT) and Magnetic Resonance Imaging (MRI) using a hybrid model of Non Sub-sampled Contourlet Transform (NSCT) and… More >

  • Open Access

    ARTICLE

    Intelligent MRI Room Design Using Visible Light Communication with Range Augmentation

    R. Priyadharsini*, A. Kunthavai

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 261-279, 2023, DOI:10.32604/iasc.2023.025884 - 06 June 2022

    Abstract Radio waves and strong magnetic fields are used by Magnetic Resonance Imaging (MRI) scanners to detect tumours, wounds and visualize detailed images of the human body. Wi-Fi and other medical devices placed in the MRI procedure room produces RF noise in MRI Images. The RF noise is the result of electromagnetic emissions produced by Wi-Fi and other medical devices that interfere with the operation of the MRI scanner. Existing techniques for RF noise mitigation involve RF shielding techniques which induce eddy currents that affect the MRI image quality. RF shielding techniques are complex and lead… More >

  • Open Access

    ARTICLE

    Utility of ultrasonography in preoperative assessment of tumor thrombi in kidney cancer

    Reza Nabavizadeh1,*, Grace Lee1,*, Katherine Bobrek1, Dattatraya Patil1, Mehrdad Alemozaffar2, Courtney Moreno3, Viraj A. Master1,4

    Canadian Journal of Urology, Vol.29, No.5, pp. 11300-11306, 2022

    Abstract Introduction: This study examined the clinical accuracy of ultrasonography compared to magnetic resonance imaging (MRI) and intraoperative findings for evaluation of tumor thrombi level in patients with renal cell carcinoma.
    Materials and methods: We retrospectively identified 38 patients at our institution who underwent both ultrasonography and MRI before undergoing open radical nephrectomy with tumor thrombectomy between 2010 and 2019. We compared tumor thrombus level findings of both ultrasonography and MRI, as well as the diagnostic accuracy of each to intraoperative findings. Agreement between ultrasonography, MRI, and surgery was tested with kappa. Logistic regression models identified factors that… More >

Displaying 21-30 on page 3 of 76. Per Page